Line 3: Line 3:
 
The Taylor series of <math> e^x </math> is
 
The Taylor series of <math> e^x </math> is
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots </math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 +
<math> e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots </math>
  
Using this equation, it is possible to relate <math>e</math> to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, <math>z = a+bi</math> for example. This yields:
+
Using this equation, it is possible to relate <math>e</math> to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, <math>ix</math> for example. This yields:
  
[[File:Eztaylor.jpg|350px|thumbnail]]
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 +
<math> e^ix = \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}} = \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots </math>
  
 
But by rearranging this, one gets the identity
 
But by rearranging this, one gets the identity

Revision as of 11:38, 2 December 2018

$ e $ and Trigonometry

The Taylor series of $ e^x $ is

                $ e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots $

Using this equation, it is possible to relate $ e $ to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, $ ix $ for example. This yields:

                $ e^ix = \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}} = \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots $

But by rearranging this, one gets the identity


References:
(Reference 1)
(Reference 2)

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach