Line 27: Line 27:
  
  
 
+
[[Walther MA279 Fall2018 topic1|Back to Home]]
 
<br><br>[[Category:MA279Fall2018Walther]]
 
<br><br>[[Category:MA279Fall2018Walther]]

Revision as of 15:44, 2 December 2018

The Fibonacci Sequence in Leaves

The Fibonacci sequence is present in both the structure and arrangement of leaves in many plants. Since plants rely on photosynthesis, they want to maximize the amount of sunlight that strikes their leaves. The vertical growth of many plants means that leaves can cover up each other. To minimize this effect, the leaves are grown such that the angle between each successive leaf is the golden angle, as shown in Figure 2.

Goldener_Schnitt_Blattstand.png
Figure 1: Leaf Arrangement Using the Golden Angle
GoldenAngle.png
Figure 2: Representation of The Golden Angle

The golden angle is simply the golden ratio applied to a circle: it is the smaller angle formed by two arcs that are related by the golden ratio.

$ \frac{a}{b} = \frac{a+b}{a} = \frac{360^o}{\theta} = \frac{1}{\phi} $
$ \theta = \phi \cdot 360^o \approx 137.5^o $

This angle minimizes the amount of overlap between the layers of leaves, maximizing the amount of sunlight the plan can receive. One method of seeing why this is the case is to consider the graph $ y = \frac{1}{\phi} x $, plotted in Figure 3.

Graph.png
Figure 3: Plot of $ y = \frac{1}{\phi} $ with Pairs of Consecutive Fibonacci Numbers

Since the golden ratio is irrational, it will never intersect any of the points on the grid, which represent integer pairs. In fact, this line will miss the grid points better than a line with any other slope; in some sense it is the “most irrational” number. Thus progressing by multiples of the golden ratio is the best choice to avoid nearing integers. Since the number of plant leaves must be an integer, arranging them using the golden ratio minimizes their overlap.

Often the leaves themselves can be related to the Fibonacci sequence. For example, the veins of some leaves are roughly spaced by the golden ratio. The leaves of the Ginko Tree also have been found to grow with dimensions that include the golden ratio. Examples of these phenomena are shown in Figures 4 and 5.

b7fdaf12eb4839e7be7afb9b7c75d8be.png
Figure 4: Organization of Venation of a Leaf
ginkgo_golden_number3.jpg
Figure 5: The Ginko Tree's Leaf and the Fibonacci Ratio


Back to Home

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett