Line 25: Line 25:
 
Since <math>u(t - \tau) = 1</math><br />
 
Since <math>u(t - \tau) = 1</math><br />
  
<math>\tau <= t</math><br />
+
<math>\tau \leq t</math><br />
  
 
<math>y(t)=\begin{cases}  
 
<math>y(t)=\begin{cases}  
\int_{0}^{t} e^{-2\tau}d\tau,  & \mbox{if }t>=0 \\
+
\int_{0}^{t} e^{-2\tau}d\tau,  & \mbox{if }t \geq 0 \\
 
0, & \mbox else
 
0, & \mbox else
 
\end{cases}</math><br />
 
\end{cases}</math><br />
  
 
<math>y(t)=\begin{cases}  
 
<math>y(t)=\begin{cases}  
\frac{e^{-2t}-1}{-2} ,  & \mbox{if }t>=0 \\
+
\frac{e^{-2t}-1}{-2} ,  & \mbox{if }t \geq 0 \\
 
0, & \mbox else
 
0, & \mbox else
 
\end{cases}</math><br />
 
\end{cases}</math><br />
  
<math>y(t)=\frac{u(t)}{2}(1-e^{-2t})<br />
+
<math>y(t)=\frac{u(t)}{2}(1-e^{-2t})</math><br />
  
  
Line 57: Line 57:
  
 
Since <math>u(-t + \tau) = 1</math><br />
 
Since <math>u(-t + \tau) = 1</math><br />
<math>\tau >= t</math><br />
+
 
 +
<math>\tau \geq t</math><br />
  
 
<math>y(t)=\begin{cases}  
 
<math>y(t)=\begin{cases}  
\int_{t}^{0} e^{3\tau}d\tau,  & \mbox{if }t<=0 \\
+
\int_{t}^{0} e^{3\tau}d\tau,  & \mbox{if }t \leq 0 \\
 
0, & \mbox else
 
0, & \mbox else
 
\end{cases}</math><br />
 
\end{cases}</math><br />
  
  
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
+
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} |^t </math><br />
  
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
Line 86: Line 87:
  
 
Since <math>u(-t + \tau) = 1</math><br />
 
Since <math>u(-t + \tau) = 1</math><br />
<math>\tau >= t</math><br />
+
 
 +
<math>\tau \geq t</math><br />
  
 
<math>y(t)=\begin{cases}  
 
<math>y(t)=\begin{cases}  
\int_{t}^{0} e^{3\tau}d\tau,  & \mbox{if }t<=0 \\
+
\int_{t}^{\infty} e^{-2\tau}d\tau,  & \mbox{if }t \geq 0 \\
0, & \mbox else
+
\int_{0}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t < 0
 
\end{cases}</math><br />
 
\end{cases}</math><br />
  
  
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
+
<math>y(t)=\begin{cases}
 
+
\frac{e^{-2t}}{2},  & \mbox{if }t \geq 0 \\
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
+
\frac{1}{2},  & \mbox{if }t < 0
 +
\end{cases}</math><br />
  
  
 
=DT Examples=
 
=DT Examples=
  
 +
Example 1: n is positive for both h[n] and x[n]
 +
 +
<math>h[n] = u[n]</math><br />
 +
 +
<math>x[n] = 4^{-n}u[n]</math><br />
 +
 +
<math>y[n] = x[n]*h[n]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k]</math><br />
 +
 +
<math>u[k]=\begin{cases}
 +
1,  & \mbox{if }k \geq 0 \\
 +
0,  & \mbox{if }k < 0
 +
\end{cases}</math><br />
 +
 +
<math>y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k]</math><br />
 +
 +
<math>u[n-k]=\begin{cases}
 +
1,  & \mbox{if }k \leq n \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox{if }n < 0
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
 +
 +
<math>y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n]</math><br />
 +
 +
 +
Example 2: n is positive for both h[n] and x[n]
 +
 +
<math>h[n] = u[-n]</math><br />
 +
 +
<math>x[n] = 3^{n}u[-n]</math><br />
 +
 +
<math>y[n] = h[n]*x[n]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k]</math><br />
 +
 +
since <math>u[-n + k] = 1</math><br />
 +
 +
<math>k \geq n</math><br />
 +
 +
<math>u[k]=\begin{cases}
 +
\sum_{k=n}^{0}3^{k},  & \mbox{if }n \leq 0 \\
 +
0,  & \mbox{if }n > 0
 +
\end{cases}</math><br />
 +
 +
Substitute <math>m = -k</math><br />
 +
 +
<math>y[n] = u[-n]\sum_{m=-n}^{0}3^{-m}</math><br />
 +
 +
<math>y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m}</math><br />
 +
 +
<math>y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}}</math><br />
 +
 +
<math>y[n] = u[-n]\frac{3 - 3^{-n}}{2}</math><br />
 +
 +
 +
 +
Example 3: n is positive for both h[n] and x[n]
 +
 +
<math>h[n] = u[n]</math><br />
 +
 +
<math>x[n] = 4^{-n}u[n]</math><br />
 +
 +
<math>y[n] = x[n]*h[n]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br />
 +
 +
<math>y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k]</math><br />
 +
 +
<math>u[k]=\begin{cases}
 +
1,  & \mbox{if }k \geq 0 \\
 +
0,  & \mbox{if }k < 0
 +
\end{cases}</math><br />
 +
 +
<math>y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k]</math><br />
 +
 +
<math>u[n-k]=\begin{cases}
 +
1,  & \mbox{if }k \leq n \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox{if }n < 0
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
 +
 +
<math>y[n]=\begin{cases}
 +
\frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\
 +
0,  & \mbox else
 +
\end{cases}</math><br />
  
 +
<math>y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n]</math><br />
  
 
[[ Main Page|Back to Main Page]]
 
[[ Main Page|Back to Main Page]]

Revision as of 21:26, 29 November 2018


CT and DT Convolution Examples

In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them.


CT Examples

Example 1: t is positive for both h(t) and x(t)


$ x(t) = u(t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau $

Since $ u(t - \tau) = 1 $

$ \tau \leq t $

$ y(t)=\begin{cases} \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\begin{cases} \frac{e^{-2t}-1}{-2} , & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\frac{u(t)}{2}(1-e^{-2t}) $


Example 2: t is negative for both h(t) and x(t)

$ x(t) = u(-t) $

$ h(t) = e^{3t} u(-t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau $


Since $ u(-t + \tau) = 1 $

$ \tau \geq t $

$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t \leq 0 \\ 0, & \mbox else \end{cases} $


$ y(t)=u(-t)\frac{e^{3\tau}}{3} |^t $

$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $


Example 3: t is negative for x(t) and positive for h(t)

$ x(t) = u(-t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau $

Since $ u(-t + \tau) = 1 $

$ \tau \geq t $

$ y(t)=\begin{cases} \int_{t}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ \int_{0}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t < 0 \end{cases} $


$ y(t)=\begin{cases} \frac{e^{-2t}}{2}, & \mbox{if }t \geq 0 \\ \frac{1}{2}, & \mbox{if }t < 0 \end{cases} $


DT Examples

Example 1: n is positive for both h[n] and x[n]

$ h[n] = u[n] $

$ x[n] = 4^{-n}u[n] $

$ y[n] = x[n]*h[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k] $

$ u[k]=\begin{cases} 1, & \mbox{if }k \geq 0 \\ 0, & \mbox{if }k < 0 \end{cases} $

$ y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k] $

$ u[n-k]=\begin{cases} 1, & \mbox{if }k \leq n \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\ 0, & \mbox{if }n < 0 \end{cases} $

$ y[n]=\begin{cases} \frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n] $


Example 2: n is positive for both h[n] and x[n]

$ h[n] = u[-n] $

$ x[n] = 3^{n}u[-n] $

$ y[n] = h[n]*x[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k] $

$ y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k] $

since $ u[-n + k] = 1 $

$ k \geq n $

$ u[k]=\begin{cases} \sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\ 0, & \mbox{if }n > 0 \end{cases} $

Substitute $ m = -k $

$ y[n] = u[-n]\sum_{m=-n}^{0}3^{-m} $

$ y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m} $

$ y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}} $

$ y[n] = u[-n]\frac{3 - 3^{-n}}{2} $


Example 3: n is positive for both h[n] and x[n]

$ h[n] = u[n] $

$ x[n] = 4^{-n}u[n] $

$ y[n] = x[n]*h[n] $

$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $

$ y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k] $

$ u[k]=\begin{cases} 1, & \mbox{if }k \geq 0 \\ 0, & \mbox{if }k < 0 \end{cases} $

$ y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k] $

$ u[n-k]=\begin{cases} 1, & \mbox{if }k \leq n \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\ 0, & \mbox{if }n < 0 \end{cases} $

$ y[n]=\begin{cases} \frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n]=\begin{cases} \frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $

$ y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n] $

Back to Main Page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett