Line 32: Line 32:
  
 
===== - Properties of the Continuous-time Fourier Transform =====
 
===== - Properties of the Continuous-time Fourier Transform =====
 +
 +
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
 
|-
 
|-
! Function
+
! name
! CTFT
+
! Property
! Proof
+
|-
|-}
+
 
 +
| Linearity
 +
|
 +
|-
 +
 
 +
| Time Shifting
 +
|
 +
|-
 +
 
 +
| Frequency Shifting
 +
|
 +
|-
 +
 
 +
| Conjugation
 +
|
 +
|-
 +
 
 +
| Scaling
 +
|
 +
|-
 +
 
 +
| Multiplication
 +
|
 +
|-
 +
 
 +
| Convolution
 +
|
 +
|-
 +
 
 +
| Differentiation
 +
|
 +
|-
 +
 
 +
| Parseval's Relation
 +
|
 +
|-

Revision as of 15:23, 14 November 2018

CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
- Properties of the Continuous-time Fourier Transform
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
name Property
Linearity
Time Shifting
Frequency Shifting
Conjugation
Scaling
Multiplication
Convolution
Differentiation
Parseval's Relation

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood