Line 38: Line 38:
 
|Time Shifting  
 
|Time Shifting  
 
|<math>\mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) </math>
 
|<math>\mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) </math>
|<math>\int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt </math><br/>
+
|<math>\mathfrak{F}(g(t - a)) = \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt </math><br/>
<math>\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/>
+
<math>=\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/>
<math>e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/>
+
<math>=e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/>
<math>e^{-i2\pi fa} G(f)</math><br/>
+
<math>=e^{-i2\pi fa} G(f)</math><br/>
  
 +
|Time Scaling
 +
|<math>\mathfrak{F}(g(ct)) = |fraq{G(\fraq{f}{c}}{|c|} </math><br/>
 +
|<math>\mathfrak{F}(g(ct)) = \int_{-\infty}^\infty g(ct)e^{-i2\pi ft}dt </math><br/>
 
|-
 
|-
 
}
 
}

Revision as of 20:42, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients


Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $

$ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $
$ =c_1G(f) + c_2H(f) $

Time Shifting $ \mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) $ $ \mathfrak{F}(g(t - a)) = \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt $

$ =\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du $
$ =e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du $
$ =e^{-i2\pi fa} G(f) $

Time Scaling $ \mathfrak{F}(g(ct)) = |fraq{G(\fraq{f}{c}}{|c|} $
$ \mathfrak{F}(g(ct)) = \int_{-\infty}^\infty g(ct)e^{-i2\pi ft}dt $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin