Line 32: | Line 32: | ||
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math> | |<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math> | ||
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/> | |<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/> | ||
− | <math>c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><br/> | + | <math>=c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><br/> |
− | <math>c_1G(f) + c_2H(f)</math><br/> | + | <math>=c_1G(f) + c_2H(f)</math><br/> |
|- | |- | ||
|- | |- | ||
} | } |
Revision as of 20:23, 22 April 2018
Table of CT Fourier Series Coefficients and Properties
Fourier series Coefficients
Function | Fourier Series | Coefficients |
---|---|---|
Properties of CT Fourier systems
Property Name | Property | Proof |
---|---|---|
Linearity | $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ | $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $ $ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $ |