Line 33: Line 33:
 
| Linearity   
 
| Linearity   
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt + \int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\
+
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1G(f) dt + \int_{-\infty}^\infty c_2H(f) dt \\
  
 
<math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br />
 
<math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br />

Revision as of 20:17, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients



Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1G(f) dt + \int_{-\infty}^\infty c_2H(f) dt \\ <math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n} $

$ \sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n} $
$ =a\chi_{1}(\omega) + b\chi_{2}(\omega) $
________________________________

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang