Line 13: | Line 13: | ||
|- | |- | ||
− | | Linearity || <math>ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || <math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) | + | | Linearity || <math>ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || <math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n])</math><br /> |
+ | <math>\sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}<math><br /> | ||
+ | <math>=\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n}</math><br /> | ||
<math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br /> | <math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br /> | ||
|- | |- |
Revision as of 22:49, 18 March 2018
Discrete-Time Fourier Transform Properties with Proofs
Property Name | Property | Proof |
---|---|---|
Periodicity | $ \chi(\omega + 2\pi) = \chi(\omega) $ | $ \chi(\omega+2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega +2\pi)n} $ $ = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} e^{-j\omega 2\pi} $ |
Linearity | $ ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega) $ | $ \mathfrak{F}(ax_{1}[n] + bx_{2}[n]) $ $ \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}<math><br /> <math>=\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n} $ |
Time Shifting & Frequency Shifting | 1) $ x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega) $ 2) $ e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}] $ |
Example |
Conjugate & Conjugate Symmetry | $ x[n] \rightarrow \chi^{*}(-\omega) $ | |
Parversal Relation | $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ | |
Convolution | $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ | |
Multiplication | $ x[n]y[n] \rightarrow \frac{1}{2\pi}\chi(\omega)*\gamma (\omega)^{}_{} $ | |
Duality | NO DUALITY IN DT | NO DUALITY IN DT |
Differentiation in Frequency | $ nx[n] \rightarrow j\frac{\mathrm{d} }{\mathrm{d} \omega}\chi(\omega) $ |