Line 19: | Line 19: | ||
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example | | Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example | ||
|- | |- | ||
− | | Convolution || | + | | Convolution || <math>x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)<\math> || Example |
|- | |- | ||
| Multiplication || Example || Example | | Multiplication || Example || Example |
Revision as of 21:54, 18 March 2018
Discrete-Time Fourier Transform Properties with Proofs
Property Name | Property | Proof |
---|---|---|
Periodicity | Χ(ω + 2π) = Χ(ω) | Example |
Linearity | ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) | Example |
Time Shifting & Frequency Shifting | 1) x[n - no] → e-jωnoX(ω) 2) e-jωonx[n] → X[ω - ωo] |
Example |
Conjugate & Conjugate Symmetry | x[n] → X*(-ω) | Example |
Parversal Relation | $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ | Example |
Convolution | $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega)<\math> || Example |- | Multiplication || Example || Example |- | Duality || Example || Example |- | Differentiation in Frequency || Example || Example |} $ |