Line 17: Line 17:
 
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || Example
 
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || Example
 
|-
 
|-
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }</math> || Example
+
| Parversal Relation || <math>\sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega</math> || Example
 
|-
 
|-
 
| Convolution || Example || Example
 
| Convolution || Example || Example

Revision as of 21:49, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity Χ(ω + 2π) = Χ(ω) Example
Linearity ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ Example
Convolution Example Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood