(Created page with "== '''Discrete-Time Fourier Transform Properties with Proofs''' ==")
 
Line 1: Line 1:
== '''Discrete-Time Fourier Transform Properties with Proofs''' ==
+
 
 +
== '''<big> Discrete-Time Fourier Transform Properties with Proofs''' </big>''' ==
 +
<br />
 +
 
 +
{| class="wikitable sortable"
 +
|-
 +
!Property Name!! Property !! Proof
 +
|-
 +
|Periodicity|| χ(ω + 2π) = χ(ω) || Example
 +
|-
 +
| Linearity || ax<sub>1</sub>[n] + bx<sub>2</sub>[n] → aχ<sub>1</sub>(ω) + bχ<sub>2</sub>(ω) || Example
 +
|-
 +
| Time Shifting & Frequency Shifting || 1)<br />
 +
2) || Example
 +
|-
 +
| Conjugate & Conjugate Symmetry || Example || Example
 +
|-
 +
| Parversal Relation || Example || Example
 +
|-
 +
| Convolution || Example || Example
 +
|-
 +
| Multiplication || Example || Example
 +
|-
 +
| Duality || Example || Example
 +
|-
 +
| Differentiation in Frequency || Example || Example
 +
|}

Revision as of 20:52, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity χ(ω + 2π) = χ(ω) Example
Linearity ax1[n] + bx2[n] → aχ1(ω) + bχ2(ω) Example
Time Shifting & Frequency Shifting 1)

2) || Example

Conjugate & Conjugate Symmetry Example Example
Parversal Relation Example Example
Convolution Example Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood