(Started page with contemplation and transformation matrices)
 
(Completed reference frame transformation of inductance)
Line 22: Line 22:
 
\end{equation}</math>
 
\end{equation}</math>
  
Because the self-inductances change with rotor position <math>\theta_r</math>, it is clear that the reluctance machine is ''salient'' (a vital operational principle of all reluctance machines). The self-inductances and mutual fit a known form as given. All leakage inductance terms are zero based on that given form.
+
Because the self-inductances change with rotor position <math>\theta_r</math>, it is clear that the reluctance machine is ''salient'' (a vital operational principle of all reluctance machines). The self-inductances and mutual fit a known form as given. All leakage inductance terms are zero based on that given form. Note that <math>L_{Aas} = L_{Abs} = L_A</math> and <math>L_{Bas} = L_{Bbs} = L_{Basbs} = -L_B</math> in this ''symmetric'' machine.
  
 
<math>\begin{align}
 
<math>\begin{align}
L_{asas} &= \cancel{L_{\ell as}} + L_{Aas} + L_{Bas} \cos\left[2\left(\theta_r - 0\right)\right] = L_{A} + L_{B} \cos\left(2\theta_r\right) \\
+
L_{asas} &= \cancel{L_{\ell as}} + L_{Aas} + L_{Bas} \cos\left[2\left(\theta_r - 0\right)\right] = L_{A} - L_{B} \cos\left(2\theta_r\right) \\
L_{bsbs} &= \cancel{L_{\ell bs}} + L_{Abs} + L_{Bbs} \cos\left[2\left(\theta_r - \frac{\pi}{2}\right)\right] = L_{A} - L_{B} \cos\left(2\theta_r\right) \\
+
L_{bsbs} &= \cancel{L_{\ell bs}} + L_{Abs} + L_{Bbs} \cos\left[2\left(\theta_r - \frac{\pi}{2}\right)\right] = L_{A} + L_{B} \cos\left(2\theta_r\right) \\
L_{asbs} &= L_{bsas} = -L_{B} \sin\left(2\theta_r\right)
+
L_{asbs} &= L_{bsas} = +L_{Basbs} \sin\left(2\theta_r\right) = -L_{B} \sin\left(2\theta_r\right)
 
\end{align}</math>
 
\end{align}</math>
  
Line 33: Line 33:
  
 
To move from stator phase variables to the derived rotor reference frame, pre-multiply by <math>\mathbf{K}_s^r =\begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix}</math>. To do the opposite and move from the derived rotor reference frame to stator phase variables, pre-multiply by <math>\mathbf{K}_r^s = \left(\mathbf{K}_s^r\right)^{-1} = \frac{1}{\cancelto{-1}{-\cos^2(\theta_r) - \sin^2(\theta_r)}} \begin{bmatrix} -\cos(\theta_r) & -\sin(\theta_r) \\ -\sin(\theta_r) & +\cos(\theta_r) \end{bmatrix} = \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} = \mathbf{K}_s^r</math>. The inverse matrix is found with the explicit formula the the inverse of a 2x2 matrix and its determinant as well. (By coincidence, <math>\mathbf{K}_s^r</math> is an involutary matrix.)
 
To move from stator phase variables to the derived rotor reference frame, pre-multiply by <math>\mathbf{K}_s^r =\begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix}</math>. To do the opposite and move from the derived rotor reference frame to stator phase variables, pre-multiply by <math>\mathbf{K}_r^s = \left(\mathbf{K}_s^r\right)^{-1} = \frac{1}{\cancelto{-1}{-\cos^2(\theta_r) - \sin^2(\theta_r)}} \begin{bmatrix} -\cos(\theta_r) & -\sin(\theta_r) \\ -\sin(\theta_r) & +\cos(\theta_r) \end{bmatrix} = \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} = \mathbf{K}_s^r</math>. The inverse matrix is found with the explicit formula the the inverse of a 2x2 matrix and its determinant as well. (By coincidence, <math>\mathbf{K}_s^r</math> is an involutary matrix.)
<!--
+
 
 
The transformation of the flux linkage equations proceeds.
 
The transformation of the flux linkage equations proceeds.
  
 
<math>\begin{align}
 
<math>\begin{align}
 
\vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r \vec{\lambda}_{abs}^{'}  \\
 
\vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r \vec{\lambda}_{abs}^{'}  \\
\vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r  \mathbf{L}_s^{'} \mathbf{K}_r^s \vec{i}_{qds}^{r} \\
+
\vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r  \mathbf{L}_s \mathbf{K}_r^s \vec{i}_{qds}^{r} \\
\vec{\lambda}_{qds}^{r} &= \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \begin{bmatrix} 8 - 4\cos(2\theta_r) & -4\sin(2\theta_r) \\ -4\sin(2\theta_r) & 8 + 4\cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r} \\
+
\vec{\lambda}_{qds}^{r} &= \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \begin{bmatrix} L_A - L_B \cos(2\theta_r) & -L_B \sin(2\theta_r) \\ -L_B \sin(2\theta_r) & L_A + L_B \cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r} \\
\vec{\lambda}_{qds}^{r} &= \begin{bmatrix} 8\cos(\theta_r) - 4\cos(\theta_r)\cos(2\theta_r) - 4\sin(\theta_r)\sin(2\theta_r) & -4\cos(\theta_r)\sin(2\theta_r) + 8\sin(\theta_r) + 4\sin(\theta_r)\cos(2\theta_r) \\ 8\sin(\theta_r) - 4\sin(\theta_r)\cos(2\theta_r) + 4\cos(\theta_r)\sin(2\theta_r) & -4\sin(\theta_r)\sin(2\theta_r) - 8\cos(\theta_r) - 4\cos(\theta_r)\cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r}
+
\vec{\lambda}_{qds}^{r} &= \begin{bmatrix} L_A \cos(\theta_r) - L_B \cos(\theta_r)\cos(2\theta_r) - L_B \sin(\theta_r)\sin(2\theta_r) & -L_B \cos(\theta_r)\sin(2\theta_r) + L_A \sin(\theta_r) + L_B \sin(\theta_r)\cos(2\theta_r) \\ L_A \sin(\theta_r) - L_B \sin(\theta_r)\cos(2\theta_r) + L_B \cos(\theta_r)\sin(2\theta_r) & -L_B \sin(\theta_r)\sin(2\theta_r) - L_A \cos(\theta_r) - L_B \cos(\theta_r)\cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r}
 
\end{align}</math>
 
\end{align}</math>
  
Line 48: Line 48:
 
\lambda_{qs}^r &=
 
\lambda_{qs}^r &=
 
\begin{split}
 
\begin{split}
   &{} \left[8\cos^2(\theta_r) - 4\cos^2(\theta_r)\cos(2\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + 8\sin^2(\theta_r) + 4\sin^2(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\
+
   &{} \left[L_A \cos^2(\theta_r) - L_B \cos^2(\theta_r)\cos(2\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_A \sin^2(\theta_r) + L_B \sin^2(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\
   &{}+ \left[8\sin(\theta_r)\cos(\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) - 4\sin^2(\theta_r)\sin(2\theta_r) + 4\cos^2(\theta_r)\sin(2\theta_r) - 8\sin(\theta_r)\cos(\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{ds}^r
+
   &{}+ \left[L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) - L_B \sin^2(\theta_r)\sin(2\theta_r) + L_B \cos^2(\theta_r)\sin(2\theta_r) - L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{ds}^r
 
\end{split} \\  
 
\end{split} \\  
 
\lambda_{qs}^r &=
 
\lambda_{qs}^r &=
 
\begin{split}
 
\begin{split}
   &{} \left[8\left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) - 4\left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) - 4\left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{qs}^r \\
+
   &{} \left[L_A \left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) - L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) - L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{qs}^r \\
   &{}+ \left[-4\left(2\sin(\theta_r)\cos(\theta_r)\right)\cos(2\theta_r) + 4\left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\sin(2\theta_r)\right] i_{ds}^r
+
   &{}+ \left[-L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\cos(2\theta_r) + L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\sin(2\theta_r)\right] i_{ds}^r
 
\end{split} \\  
 
\end{split} \\  
\lambda_{qs}^r &= \left[8 - 4\sin(2\theta_r)\sin(2\theta_r) - 4\cos(2\theta_r)\cos(2\theta_r)\right] i_{qs}^r + \left[-4\sin(2\theta_r)\cos(2\theta_r) - 4\cos(2\theta_r)\sin(2\theta_r)\right] i_{ds}^r \\
+
\lambda_{qs}^r &= \left[L_A - L_B \sin(2\theta_r)\sin(2\theta_r) - L_B \cos(2\theta_r)\cos(2\theta_r)\right] i_{qs}^r + \left[-L_B \sin(2\theta_r)\cos(2\theta_r) - L_B \cos(2\theta_r)\sin(2\theta_r)\right] i_{ds}^r \\
\lambda_{qs}^r &= 4\left[2 - \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{qs}^r + \left[0\right] i_{ds}^r \\
+
\lambda_{qs}^r &= \left[L_A - L_B \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{qs}^r + \left[0\right] i_{ds}^r \\
\lambda_{qs}^r &= 4\left[2 - 1\right] i_{qs}^r \\
+
\lambda_{qs}^r &= \left[L_A - L_B\right] i_{qs}^r
\lambda_{qs}^r &= 4 i_{qs}^r
+
 
\end{align}</math>
 
\end{align}</math>
  
Line 65: Line 64:
 
\lambda_{ds}^r &=
 
\lambda_{ds}^r &=
 
\begin{split}
 
\begin{split}
   &{} \left[8\sin(\theta_r)\cos(\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) + 4\cos^2(\theta_r)\sin(2\theta_r) - 4\sin^2(\theta_r)\sin(2\theta_r) - 8\sin(\theta_r)\cos(\theta_r) - 4\sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\
+
   &{} \left[L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) + L_B \cos^2(\theta_r)\sin(2\theta_r) - L_B \sin^2(\theta_r)\sin(2\theta_r) - L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\
   &{}+ \left[8\sin^2(\theta_r) - 4\sin^2(\theta_r)\cos(2\theta_r) + 4\sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + 4\sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + 8\cos^2(\theta_r) + 4\cos^2(\theta_r)\cos(2\theta_r)\right] i_{ds}^r
+
   &{}+ \left[L_A \sin^2(\theta_r) - L_B \sin^2(\theta_r)\cos(2\theta_r) + L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_A \cos^2(\theta_r) + L_B\cos^2(\theta_r)\cos(2\theta_r)\right] i_{ds}^r
 
\end{split} \\  
 
\end{split} \\  
\lambda_{ds}^r &= \left[0\right] i_{qs}^r + \left[8\left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) + 4\left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) + 4\left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{ds}^r \\
+
\lambda_{ds}^r &= \left[0\right] i_{qs}^r + \left[L_A \left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) + L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) + L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{ds}^r \\
\lambda_{ds}^r &= \left[8 + 4\sin(2\theta_r)\sin(2\theta_r) + 4\cos(2\theta_r)\cos(2\theta_r)\right] i_{ds}^r \\
+
\lambda_{ds}^r &= \left[L_A  + L_B \sin(2\theta_r)\sin(2\theta_r) + L_B \cos(2\theta_r)\cos(2\theta_r)\right] i_{ds}^r \\
\lambda_{ds}^r &= 4\left[2 + \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{ds}^r \\
+
\lambda_{ds}^r &= \left[L_A + L_B \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{ds}^r \\
\lambda_{ds}^r &= 4\left[2 + 1\right] i_{ds}^r \\
+
\lambda_{ds}^r &= \left[L_A + L_B\right] i_{ds}^r
\lambda_{ds}^r &= 12 i_{ds}^r
+
 
\end{align}</math>
 
\end{align}</math>
  
These trigonometric simplifications rely on the Pythagorean Identity of <math>\sin^2(x) + \cos^2(x) = 1</math> (not given), the Double Angle Identity for sine of <math>\sin(2x) = 2\sin(x)\cos(x)</math> (derived from given), and the Double Angle Identity for cosine of <math>\cos(2x) = \cos^2(x) - \sin^2(x)</math> (derived from given). All rotor position dependence has been removed from the equations as was initially sought back at the start of the solution. The vector flux linkage equation is finished.
+
These trigonometric simplifications rely on the Pythagorean Identity of <math>\sin^2(x) + \cos^2(x) = 1</math> (not given), the Double Angle Identity for sine of <math>\sin(2x) = 2\sin(x)\cos(x)</math> (derived from given), and the Double Angle Identity for cosine of <math>\cos(2x) = \cos^2(x) - \sin^2(x)</math> (derived from given). All rotor position dependence has been removed from the equations as would be expected from a reference frame transformation. The vector flux linkage equation is finished. The result is consistent with equations for <math>L_{mq}</math> and <math>L_{md}</math> in a 2-phase machine with the given form of inductance matrix.
  
 
<math>\begin{equation}
 
<math>\begin{equation}
\boxed{\vec{\lambda}_{qds}^r = \begin{bmatrix} 4 & 0 \\ 0 & 12 \end{bmatrix} \vec{i}_{qds}^r}
+
\boxed{\mathbf{K}_s^r  \mathbf{L}_s \mathbf{K}_r^s = \begin{bmatrix} L_A - L_B & 0 \\ 0 & L_A + L_B \end{bmatrix}}
 
\end{equation}</math>
 
\end{equation}</math>
-->
+
 
 
----
 
----
 
==Discussion==
 
==Discussion==

Revision as of 17:29, 7 February 2018


Answers and Discussions for

ECE Ph.D. Qualifying Exam PE-1 August 2012



Problem 3

Contemplation

The first step is to ponder the inductance matrix in $ \vec{\lambda}_{abs} = \mathbf{L}_s \vec{i}_{abs} $.

$ \begin{equation} \mathbf{L}_s = \begin{bmatrix} L_{asas} & L_{asbs} \\ L_{bsas} & L_{bsbs} \end{bmatrix} \end{equation} $

Because the self-inductances change with rotor position $ \theta_r $, it is clear that the reluctance machine is salient (a vital operational principle of all reluctance machines). The self-inductances and mutual fit a known form as given. All leakage inductance terms are zero based on that given form. Note that $ L_{Aas} = L_{Abs} = L_A $ and $ L_{Bas} = L_{Bbs} = L_{Basbs} = -L_B $ in this symmetric machine.

$ \begin{align} L_{asas} &= \cancel{L_{\ell as}} + L_{Aas} + L_{Bas} \cos\left[2\left(\theta_r - 0\right)\right] = L_{A} - L_{B} \cos\left(2\theta_r\right) \\ L_{bsbs} &= \cancel{L_{\ell bs}} + L_{Abs} + L_{Bbs} \cos\left[2\left(\theta_r - \frac{\pi}{2}\right)\right] = L_{A} + L_{B} \cos\left(2\theta_r\right) \\ L_{asbs} &= L_{bsas} = +L_{Basbs} \sin\left(2\theta_r\right) = -L_{B} \sin\left(2\theta_r\right) \end{align} $

Rotor Reference Frame Transformation

To move from stator phase variables to the derived rotor reference frame, pre-multiply by $ \mathbf{K}_s^r =\begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} $. To do the opposite and move from the derived rotor reference frame to stator phase variables, pre-multiply by $ \mathbf{K}_r^s = \left(\mathbf{K}_s^r\right)^{-1} = \frac{1}{\cancelto{-1}{-\cos^2(\theta_r) - \sin^2(\theta_r)}} \begin{bmatrix} -\cos(\theta_r) & -\sin(\theta_r) \\ -\sin(\theta_r) & +\cos(\theta_r) \end{bmatrix} = \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} = \mathbf{K}_s^r $. The inverse matrix is found with the explicit formula the the inverse of a 2x2 matrix and its determinant as well. (By coincidence, $ \mathbf{K}_s^r $ is an involutary matrix.)

The transformation of the flux linkage equations proceeds.

$ \begin{align} \vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r \vec{\lambda}_{abs}^{'} \\ \vec{\lambda}_{qds}^{r} &= \mathbf{K}_s^r \mathbf{L}_s \mathbf{K}_r^s \vec{i}_{qds}^{r} \\ \vec{\lambda}_{qds}^{r} &= \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \begin{bmatrix} L_A - L_B \cos(2\theta_r) & -L_B \sin(2\theta_r) \\ -L_B \sin(2\theta_r) & L_A + L_B \cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r} \\ \vec{\lambda}_{qds}^{r} &= \begin{bmatrix} L_A \cos(\theta_r) - L_B \cos(\theta_r)\cos(2\theta_r) - L_B \sin(\theta_r)\sin(2\theta_r) & -L_B \cos(\theta_r)\sin(2\theta_r) + L_A \sin(\theta_r) + L_B \sin(\theta_r)\cos(2\theta_r) \\ L_A \sin(\theta_r) - L_B \sin(\theta_r)\cos(2\theta_r) + L_B \cos(\theta_r)\sin(2\theta_r) & -L_B \sin(\theta_r)\sin(2\theta_r) - L_A \cos(\theta_r) - L_B \cos(\theta_r)\cos(2\theta_r) \end{bmatrix} \begin{bmatrix} +\cos(\theta_r) & \sin(\theta_r) \\ \sin(\theta_r) & -\cos(\theta_r) \end{bmatrix} \vec{i}_{qds}^{r} \end{align} $

The matrix has gotten so out of hand that reverting back to separated flux linkage equations helps fit the equation on the display.

$ \begin{align} \lambda_{qs}^r &= \begin{split} &{} \left[L_A \cos^2(\theta_r) - L_B \cos^2(\theta_r)\cos(2\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_A \sin^2(\theta_r) + L_B \sin^2(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\ &{}+ \left[L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) - L_B \sin^2(\theta_r)\sin(2\theta_r) + L_B \cos^2(\theta_r)\sin(2\theta_r) - L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{ds}^r \end{split} \\ \lambda_{qs}^r &= \begin{split} &{} \left[L_A \left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) - L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) - L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{qs}^r \\ &{}+ \left[-L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\cos(2\theta_r) + L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\sin(2\theta_r)\right] i_{ds}^r \end{split} \\ \lambda_{qs}^r &= \left[L_A - L_B \sin(2\theta_r)\sin(2\theta_r) - L_B \cos(2\theta_r)\cos(2\theta_r)\right] i_{qs}^r + \left[-L_B \sin(2\theta_r)\cos(2\theta_r) - L_B \cos(2\theta_r)\sin(2\theta_r)\right] i_{ds}^r \\ \lambda_{qs}^r &= \left[L_A - L_B \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{qs}^r + \left[0\right] i_{ds}^r \\ \lambda_{qs}^r &= \left[L_A - L_B\right] i_{qs}^r \end{align} $

$ \begin{align} \lambda_{ds}^r &= \begin{split} &{} \left[L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r) + L_B \cos^2(\theta_r)\sin(2\theta_r) - L_B \sin^2(\theta_r)\sin(2\theta_r) - L_A \sin(\theta_r)\cos(\theta_r) - L_B \sin(\theta_r)\cos(\theta_r)\cos(2\theta_r)\right] i_{qs}^r \\ &{}+ \left[L_A \sin^2(\theta_r) - L_B \sin^2(\theta_r)\cos(2\theta_r) + L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_B \sin(\theta_r)\cos(\theta_r)\sin(2\theta_r) + L_A \cos^2(\theta_r) + L_B\cos^2(\theta_r)\cos(2\theta_r)\right] i_{ds}^r \end{split} \\ \lambda_{ds}^r &= \left[0\right] i_{qs}^r + \left[L_A \left(\sin^2(\theta_r) + \cos^2(\theta_r)\right) + L_B \left(2\sin(\theta_r)\cos(\theta_r)\right)\sin(2\theta_r) + L_B \left(\cos^2(\theta_r) - \sin^2(\theta_r)\right)\cos(2\theta_r)\right] i_{ds}^r \\ \lambda_{ds}^r &= \left[L_A + L_B \sin(2\theta_r)\sin(2\theta_r) + L_B \cos(2\theta_r)\cos(2\theta_r)\right] i_{ds}^r \\ \lambda_{ds}^r &= \left[L_A + L_B \left(\sin^2(2\theta_r) + \cos^2(2\theta_r)\right)\right] i_{ds}^r \\ \lambda_{ds}^r &= \left[L_A + L_B\right] i_{ds}^r \end{align} $

These trigonometric simplifications rely on the Pythagorean Identity of $ \sin^2(x) + \cos^2(x) = 1 $ (not given), the Double Angle Identity for sine of $ \sin(2x) = 2\sin(x)\cos(x) $ (derived from given), and the Double Angle Identity for cosine of $ \cos(2x) = \cos^2(x) - \sin^2(x) $ (derived from given). All rotor position dependence has been removed from the equations as would be expected from a reference frame transformation. The vector flux linkage equation is finished. The result is consistent with equations for $ L_{mq} $ and $ L_{md} $ in a 2-phase machine with the given form of inductance matrix.

$ \begin{equation} \boxed{\mathbf{K}_s^r \mathbf{L}_s \mathbf{K}_r^s = \begin{bmatrix} L_A - L_B & 0 \\ 0 & L_A + L_B \end{bmatrix}} \end{equation} $


Discussion



Back to PE-1, August 2012

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin