Line 22: Line 22:
 
\right.
 
\right.
 
</math>
 
</math>
 
What properties of the complex magnitude can you use to check your answer?
 
 
----
 
 
== Share your answers below ==
 
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
 
----
 
  
 
=== Answer 1 ===
 
=== Answer 1 ===
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |j|^2 \\
+
E_{\infty}&=\sum_{n=0}^N |(\frac{1}{1+j})^n|^2 \\
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\  
+
&= \sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\  
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
 
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\

Revision as of 09:40, 22 January 2018

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

$  x[n] = \left\{ \begin{array}{ll}  (\frac{1}{1+j})^n & \text{ if } n>=0,\\  0 & \text{otherwise}. \end{array} \right.  $

Answer 1

$ \begin{align} E_{\infty}&=\sum_{n=0}^N |(\frac{1}{1+j})^n|^2 \\ &= \sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


So $ E_{\infty} = \infty $.

Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --Mboutin 19:31, 13 January 2011 (UTC)

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |j|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


So $ P_{\infty} = 1 $. 

--Rgieseck 21:35, 12 January 2011

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett