Line 120: | Line 120: | ||
'''·''' The axes follow the directions of eigenvectors of the linearisations. | '''·''' The axes follow the directions of eigenvectors of the linearisations. | ||
− | '''·''' From the knowledge of equilibrium points and their stability, we know | + | '''·''' From the knowledge of equilibrium points and their stability, we know \begin{cases} |
If the eigenvalue <math>\lambda>0</math>, then the equilibrium point is unstable, hence the solution is "pulling" the point out to both sides. \\ | If the eigenvalue <math>\lambda>0</math>, then the equilibrium point is unstable, hence the solution is "pulling" the point out to both sides. \\ | ||
If the eigenvalue <math>\lambda<0</math>, then the equilibrium point is stable, hence the solution is "pushing" the point in itself. \\ | If the eigenvalue <math>\lambda<0</math>, then the equilibrium point is stable, hence the solution is "pushing" the point in itself. \\ | ||
− | If the eigenvalue <math>\lambda=0</math>, then the equilibrium point is semi-stable, hence the solution goes to the same direction on both sides of the point. | + | If the eigenvalue <math>\lambda=0</math>, then the equilibrium point is semi-stable, hence the solution goes to the same direction on both sides of the point. \end{cases} |
</font> | </font> |
Revision as of 01:10, 21 November 2017
Non-Linear Systems of ODEs
6.0 Concept
Consider the system of ODEs in 4.0,
$ \frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n) $
$ \frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n) $
...
$ \frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n) $
When the $ n $ ODEs are not all linear, this is a nonlinear system of ODE. Consider an example,
$ \frac{dx}{dt}=x(1-2x-3y) $,
$ \frac{dy}{dt}=2y(3-x-2y) $.
In this tutorial, we will analyse this system in different aspects to build up a basic completed concept.
6.1 Equilibrium Point
An equilibrium point is a constant solution to a differential equation. Hence, for an ODE system, an equilibrium point is going to be a solution of a pair of constants. Set all of the differential terms equal to $ 0 $ to find the equilibrium point.
In the example in 6.0, we set $ \frac{dx}{dt}=\frac{dy}{dt}=0 $, hence $ x(1-2x-3y)=2y(3-x-2y)=0 $. Solve this system of normal equations.
· When $ x=2y=0 $, then $ x=y=0 $.
· When $ x=3-2x-2y=0 $, then $ x=0 $, $ y=\frac{3}{2} $.
· When $ 1-2x-3y=2y=0 $, then $ x=\frac{1}{2} $, $ y=0 $.
· When $ 1-2x-3y=3-x-2y=0 $, then $ x=-7 $, $ y=5 $.
Hence, the equilibrium points of this nonlinear system are $ (x=0,y=0) $, $ (x=0,y=\frac{3}{2}) $, $ (x=\frac{1}{2},y=0) $, and $ (x=-7,y=5) $. This means in a xy-coordinate, macroscopically, the graph of the solution of ODE (a function) will keep a dynamic equilibrium, near which the sum of velocity (measured in both direction and speed) of each point on the graph is $ 0 $.
6.2 Linearisation
Macroscopically, the whole system is nonlinear, but we still need a linear system for further analysis. So here comes a method of linearisation near the equilibrium points. We linearise the graph of the solution for details to sketch a global phase portrait. A similar concept we can refer to is the expansion of Taylor series. It is not a linearisation, but using a method to approach the exact function, which is kinda like using local phase portraits to approach the global one. Linearisation here is a method to identify the local phase portraits.
Suppose $ (x_0,y_0) $ is an equilibrium point and define two deviation variables $ \epsilon (t)=x(t)-x_0 $, $ \mu (t)=y(t)-y_0 $, where $ x(t)→x_0 $ and $ y(t)→y_0 $. The "deviation variables" mean that we start slightly differently from $ (x_0,y_0) $ and measure the difference to be more accurate. Hence $ \epsilon(t) $ and $ \mu (t) $ are approaching to $ 0 $.
Then we differentiate the deviation variables to have
$ \frac{d\epsilon}{dt}=\frac{dx}{dt}=f(x_0+\epsilon,y_0+\mu) $,
$ \frac{d\mu}{dt}=\frac{dy}{dt}=g(x_0+\epsilon,y_0+\mu) $.
By the expansion of Taylor series for two-variable functions, we have
$ \frac{d\epsilon}{dt}=f(x_0,y_0)+\epsilon \frac{\partial f}{\partial x}|_{(x_0,y_0)}+\mu \frac{\partial f}{\partial y}|_{(x_0,y_0)}+... $,
$ \frac{d\mu}{dt}=g(x_0,y_0)+\epsilon \frac{\partial g}{\partial x}|_{(x_0,y_0)}+\mu \frac{\partial g}{\partial y}|_{(x_0,y_0)}+... $
Here we converted the nonlinear system to a linear one. As $ f(x_0,y_0)≈g(x_0,y_0)→0 $, so we can write the system into the matrix form, which is the linearisation near $ (x_0,y_0) $: $ \begin{bmatrix} \frac{d\epsilon}{dt} \\ \frac{d\mu}{dt} \end{bmatrix}=\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix} \begin{bmatrix} \epsilon \\ \mu \end{bmatrix} $.
This is called Jacobian matrix, usually denoted as $ J $.
Still considering the example in 6.0, we will have the general linearisation
$ J=Df(x,y)=\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}=\begin{bmatrix} 1-4x-3y & -3x \\ -2y & 6-2x-8y \end{bmatrix} $ for this nonlinear system.
Hence, if plugging all the equilibrium points from 6.1 into this general linearisation, we will have:
· $ J_{(0,0)}=\begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} $. The eigenvalues are $ \lambda_1=1 $, $ \lambda_2=6 $, and the corresponding eigenvectors are $ \bold{v_1}=\begin{bmatrix} 1 \\ 0 \end{bmatrix} $, $ \bold{v_2}=\begin{bmatrix} 0 \\ 1 \end{bmatrix} $.
· $ J_{(\frac{1}{2},0)}=\begin{bmatrix} -1 & -\frac{3}{2} \\ 0 & 5 \end{bmatrix} $. The eigenvalues are $ \lambda_1=-1 $, $ \lambda_2=5 $, and the corresponding eigenvectors are $ \bold{v_1}=\begin{bmatrix} 1 \\ 0 \end{bmatrix} $, $ \bold{v_2}=\begin{bmatrix} 1 \\ -4 \end{bmatrix} $.
· $ J_{(0,\frac{3}{2})}=\begin{bmatrix} -\frac{7}{2} & 0 \\ -3 & -6 \end{bmatrix} $. The eigenvalues are $ \lambda_1=-\frac{7}{2} $, $ \lambda_2=-6 $, and the corresponding eigenvectors are $ \bold{v_1}=\begin{bmatrix} 5 \\ -6 \end{bmatrix} $, $ \bold{v_2}=\begin{bmatrix} 0 \\ 1 \end{bmatrix} $.
· $ J_{(-7,5)}=\begin{bmatrix} 14 & 21 \\ -10 & -20 \end{bmatrix} $. The eigenvalues are $ \lambda_1=\sqrt{79}-3≈5.89 $, $ \lambda_2=-\sqrt{79}-3≈-11.89 $, and the corresponding eigenvectors are $ \bold{v_1}=\begin{bmatrix} -0.81 \\ 1 \end{bmatrix} $, $ \bold{v_2}=\begin{bmatrix} -1 \\ 1.23 \end{bmatrix} $.
6.3 Local Phase Portraits
For a nonlinear system of two ODEs, a local phase portrait consists two axes, the graph of solution and their directions. Basically,
· The axes follow the directions of eigenvectors of the linearisations.
· From the knowledge of equilibrium points and their stability, we know \begin{cases} If the eigenvalue $ \lambda>0 $, then the equilibrium point is unstable, hence the solution is "pulling" the point out to both sides. \\ If the eigenvalue $ \lambda<0 $, then the equilibrium point is stable, hence the solution is "pushing" the point in itself. \\ If the eigenvalue $ \lambda=0 $, then the equilibrium point is semi-stable, hence the solution goes to the same direction on both sides of the point. \end{cases}
6.4 Nullclines
6.5 Global Phase Portraits
6.6 References
Department of Computing + Mathematical Sciences, California Institute of Technology. (2002). Jacobian Linearizations, equilibrium points. Pasadena, CA., USA.
Institute of Natural and Mathematical Science, Massey University. (2017). 160.204 Differential Equations I: Course materials. Auckland, New Zealand.
Robinson, J. C. (2003). An introduction to ordinary differential equations. New York, NY., USA: Cambridge University Press.