(Created page with "== <div style="text-align:center"> Non-Linear Systems of ODEs </div> == <div style="text-align:center"> A slecture by Yijia Wen </div> === <small> 6.0 Abstract <small> === <...") |
|||
Line 2: | Line 2: | ||
<div style="text-align:center"> A slecture by Yijia Wen </div> | <div style="text-align:center"> A slecture by Yijia Wen </div> | ||
− | === <small> 6.0 | + | === <small> 6.0 Concept <small> === |
− | <font size="3px"> </font> | + | <font size="3px"> Consider the system of ODEs in 4.0, |
+ | |||
+ | <math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math> | ||
+ | |||
+ | <math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math> | ||
+ | |||
+ | ... | ||
+ | |||
+ | <math>\frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n)</math> | ||
+ | |||
+ | When the <math>n</math> ODEs are not all linear, this is a nonlinear system of ODE. </font> | ||
Revision as of 20:14, 20 November 2017
Non-Linear Systems of ODEs
A slecture by Yijia Wen
6.0 Concept
Consider the system of ODEs in 4.0,
$ \frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n) $
$ \frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n) $
...
$ \frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n) $
When the $ n $ ODEs are not all linear, this is a nonlinear system of ODE.
6.1 Non-Linear Autonomous System
6.2 Non-Linear Non-Autonomous System
6.3 Exercises
6.4 References
Institute of Natural and Mathematical Science, Massey University. (2017). 160.204 Differential Equations I: Course materials. Auckland, New Zealand.
Robinson, J. C. (2003). An introduction to ordinary differential equations. New York, NY., USA: Cambridge University Press.