(Created page with "== <div style="text-align:center"> Non-Linear Systems of ODEs </div> == <div style="text-align:center"> A slecture by Yijia Wen </div> === <small> 6.0 Abstract <small> === <...")
 
Line 2: Line 2:
 
<div style="text-align:center"> A slecture by Yijia Wen </div>
 
<div style="text-align:center"> A slecture by Yijia Wen </div>
  
=== <small> 6.0 Abstract <small> ===
+
=== <small> 6.0 Concept <small> ===
  
<font size="3px">  </font>
+
<font size="3px"> Consider the system of ODEs in 4.0,
 +
 
 +
<math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math>
 +
 
 +
<math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math>
 +
 
 +
...
 +
 
 +
<math>\frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n)</math>
 +
 
 +
When the <math>n</math> ODEs are not all linear, this is a nonlinear system of ODE. </font>
  
  

Revision as of 20:14, 20 November 2017

Non-Linear Systems of ODEs

A slecture by Yijia Wen

6.0 Concept

Consider the system of ODEs in 4.0,

$ \frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n) $

$ \frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n) $

...

$ \frac{dx_n}{dt}=f_n(t,x_1,x_2,...x_n) $

When the $ n $ ODEs are not all linear, this is a nonlinear system of ODE.


6.1 Non-Linear Autonomous System


6.2 Non-Linear Non-Autonomous System


6.3 Exercises


6.4 References

Institute of Natural and Mathematical Science, Massey University. (2017). 160.204 Differential Equations I: Course materials. Auckland, New Zealand.

Robinson, J. C. (2003). An introduction to ordinary differential equations. New York, NY., USA: Cambridge University Press.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett