Line 28: Line 28:
 
\end{equation}
 
\end{equation}
 
</math>
 
</math>
 
 
Find the asymptotic run time complexity of this algorithm. Give details of your computation.
 
Find the asymptotic run time complexity of this algorithm. Give details of your computation.
  
 
(b) Assume functions <math>f</math> and <math>g</math> such that <math>f(n)</math> is <math>O(g(n))</math>. Prove or disprove that <math>3^{f(n)}</math> is <math>O(3^{g(n)})</math>.
 
(b) Assume functions <math>f</math> and <math>g</math> such that <math>f(n)</math> is <math>O(g(n))</math>. Prove or disprove that <math>3^{f(n)}</math> is <math>O(3^{g(n)})</math>.
 
 
----
 
----
 
===Share and discuss your solution below. ===
 
===Share and discuss your solution below. ===

Revision as of 18:18, 21 August 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Problem 1.

(a) Assume the run time for some algorithm is given by the following recurrence:
$ \begin{equation} T(n) = 2T(\sqrt[]{n}) + \log n \end{equation} $ Find the asymptotic run time complexity of this algorithm. Give details of your computation.

(b) Assume functions $ f $ and $ g $ such that $ f(n) $ is $ O(g(n)) $. Prove or disprove that $ 3^{f(n)} $ is $ O(3^{g(n)}) $.


Share and discuss your solution below.


Solution 1

(a) First, let us change the variables. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $. We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can be written in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

(b) $ 3^{f(n)} $ is NOT $ O(3^{g(n)} $). Here is a counter example:

Let $ f(n) = n $ and $ g(n)=\frac{n}{2} $. Then $ f(n) = O(g(n)) $. Now, $ 3^{f(n)}=3^n $, $ f(3^{f(n)})=O(3^n) $; however, $ O(3^{g(n)})=O(3^{\frac{n}{2}}) $. So $ f(3^{f(n)}) \neq O(3^{g(n)}) $.


Solution 2

(a) Assume $ T(n) = O(\log n) $, so
$ \begin{equation} \begin{aligned} T(\sqrt[]{n}) &= O(\log \sqrt[]{n} ) \\ &= O(\frac{1}{2}\log n) \end{aligned} \end{equation} $
So
, $ \begin{equation} \begin{aligned} T(n) &= 2 T(\sqrt[]{n}) + \log n \\ &= O(\log n ) + \log n \\ &= O(\log n) \end{aligned} \end{equation} $

(b) $ f(n) $ is $ O(\log n) $, then

$ f(n) <= g(n) $.

So,

$ \begin{equation} 3^{f(n)} <= 3^{g(n)} \end{equation} $


So, $ 3^{f(n)} $ is $ O(3^{g(n)}) $


Comments on Solution 2:

1. Probabilities are defined on events. So using curly braces inside parentheses are necessary.

2. Variance formula is incorrect. The expectation argument is not squared.

3. Using ":" for "such that" is more standard and less ambiguous than using "|".



Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009