(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...")
 
Line 16: Line 16:
 
</font size>
 
</font size>
  
August 2007
+
August 2013
 
</center>
 
</center>
 
----
 
----
 
----
 
----
 
==Questions==
 
==Questions==
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_07/MN-2%20QE%2007.pdf link]
+
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_13/MN-2%20QE%2013.pdf link]
  
 
=Solutions of all questions=
 
=Solutions of all questions=
  
1)  
+
1) Two effects:
A) Forward
+
i) Kirk effect or base pushout
 +
ii) Current crowding
  
B)   <math>10^{16}cm^{-3}</math>
+
   ------------------------------------------------------------------------------------
 +
  2) <math>Eg(InP) > Eg(InGaAs)</math>
  
C) <math>10^{14}cm^{-3}</math>
+
  So; InP is in emitter and collector.
  
D) <math>10^{9}\times10^{14} = n_i^2</math>
+
[[Image:MN2_2013_1.png|Alt text|300x300px]]
<math>\implies n_i = 10^{23/2}</math>
+
[[Image:MN2_2013_2.png|Alt text|300x300px]]
  
E) Yes.
+
* <math>\beta</math> increases as:
 
+
<math>
F) <math>
+
 
\begin{align*}
 
\begin{align*}
\triangle P_n&=10^{12}-10^9\approx 10^{12}\\
+
\beta &=\frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\cdot\frac{B_E}{N_B}\\
\triangle P_n&=\frac{n_i^2}{N_D}(e^{qV_A/kT}-1)=10^{12}\\
+
&\approx\frac{n_{iB}^2}{n_{iE}^2}\cdot\frac{B_E}{N_B}\cdot\frac{V_{th}}{v_s}
&\implies e^{qV_A/kT} = 10^3\\
+
&\implies V_A = 0.026\times\ln(10^3) = 0.026\times6.9\\
+
&= 0.17 V
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
 +
<math>
 +
\frac{n_{iB}^2}{n_{iE}^2} = e^{\triangle Eg/kT}
 +
  </math>
 +
; So huge improvement
  
  ------------------------------------------------------------------------------------
+
 
2)
+
* <math>V_{cb,br}</math> increases as <math>V_{cb,br}\approx\frac{3}{2}</math> Eg collector
 +
 
 +
 
 +
* <math>f_{max}</math> increases
 
<math>
 
<math>
 +
f_{max}^{-1}\approx f_T^{-1} = \bigg(\frac{w_B^2}{2D_n}+\frac{w_{BC}}{2v_{sat}}\bigg)+\frac{kT}{qSe}[C_{jBC}+C_{jBE}]
 +
</math>
 +
here; <math>w_B\downarrow I_C\uparrow C_J\downarrow</math> all leads to <math>f_T\uparrow</math>
 +
 +
 +
* high current effect reduces
 +
 +
 +
* <math>V_cesat</math> (??)
 +
 +
  ------------------------------------------------------------------------------------
 +
 
 +
  3)a)<math>
 
\begin{align*}
 
\begin{align*}
|I_E| & = qD_p\frac{10^{10}}{0.1\times10^{-4}} = 1.8\times10^{16}q\\
+
V_a&=0\\
|I_B| & = qD_n\frac{10^{8}}{0.2\times10^{-4}} = 1.8\times10^{14}q\\
+
\therefore E&=0
\beta + 1 &= \frac{|I_E|}{|I_B|}\approx 67\\
+
&\therefore \beta= 66 \text{ (chk)}
+
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
 
+
<math>
------------------------------------------------------------------------------------
+
\therefore n_p(x,t) = \frac{N}{\sqrt{4\pi D_nt}}exp\bigg(\frac{-x^2}{4D_nt}-\frac{t}{\tau_n}\bigg)+n_{p0}
3)
+
A)
+
<math>
+
\alpha_T = \frac{0.997J_0}{0.998J_0} = 0.99
+
 
</math>
 
</math>
 +
  At <math>x=0</math>
  
B)
+
\begin{figure}[H]
<math>
+
[[Image:MN2_2013_3.png|Alt text|300x300px]]
\gamma = \frac{0.998J_0}{(0.998+0.002)J_0} = 0.998
+
\noindent 2 unknowns <math>\to D_n,\tau_n</math> selecting 2 specific times and using the excess carrier can find <math>D_n</math> and <math>\tau_n</math>.
</math>
+
+
C)D)
+
  <math>
+
\begin{align*}
+
\alpha_{dc} &= \gamma\cdot\alpha_T\\
+
&=0.98802
+
\end{align*}
+
</math>  
+
<math>
+
\beta_{dc} = \frac{\alpha_{dc}}{1-\alpha_{dc}}\approx 82
+
</math>
+
<math>
+
\begin{align*}
+
I_E &= (0.998+0.002)J_0 = J_0\\
+
I_C &= 0.997J_0\\
+
I_B &= I_E-I_C = 0.003J_0
+
\end{align*}
+
</math>
+
  
------------------------------------------------------------------------------------
+
At <math>x=X</math>; initially no excess carrier.
4)
+
[[Image:MN2_2013_4.png|Alt text|300x300px]]
<math>
+
\text{Derivation of } \beta = \frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{N_E}{N_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}
+
</math>
+
  
------------------------------------------------------------------------------------
+
b) For applied field; decay will be much quicker.
+
 
 +
  ------------------------------------------------------------------------------------
  
  
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 21:22, 5 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 2: Junction Devices

August 2013



Questions

All questions are in this link

Solutions of all questions

1) Two effects: i) Kirk effect or base pushout ii) Current crowding

 ------------------------------------------------------------------------------------
 2) $ Eg(InP) > Eg(InGaAs) $
 So; InP is in emitter and collector.

Alt text Alt text

  • $ \beta $ increases as:

$ \begin{align*} \beta &=\frac{D_n}{D_p}\cdot\frac{W_E}{W_B}\cdot\frac{n_{iB}^2}{n_{iE}^2}\cdot\frac{B_E}{N_B}\\ &\approx\frac{n_{iB}^2}{n_{iE}^2}\cdot\frac{B_E}{N_B}\cdot\frac{V_{th}}{v_s} \end{align*} $ $ \frac{n_{iB}^2}{n_{iE}^2} = e^{\triangle Eg/kT} $

So huge improvement


  • $ V_{cb,br} $ increases as $ V_{cb,br}\approx\frac{3}{2} $ Eg collector


  • $ f_{max} $ increases

$ f_{max}^{-1}\approx f_T^{-1} = \bigg(\frac{w_B^2}{2D_n}+\frac{w_{BC}}{2v_{sat}}\bigg)+\frac{kT}{qSe}[C_{jBC}+C_{jBE}] $ here; $ w_B\downarrow I_C\uparrow C_J\downarrow $ all leads to $ f_T\uparrow $


  • high current effect reduces


  • $ V_cesat $ (??)
 ------------------------------------------------------------------------------------
 
 3)a)$  \begin{align*} V_a&=0\\ \therefore E&=0 \end{align*}  $

$ \therefore n_p(x,t) = \frac{N}{\sqrt{4\pi D_nt}}exp\bigg(\frac{-x^2}{4D_nt}-\frac{t}{\tau_n}\bigg)+n_{p0} $

 At $ x=0 $

\begin{figure}[H] Alt text \noindent 2 unknowns $ \to D_n,\tau_n $ selecting 2 specific times and using the excess carrier can find $ D_n $ and $ \tau_n $.

At $ x=X $; initially no excess carrier. Alt text

b) For applied field; decay will be much quicker.

 ------------------------------------------------------------------------------------



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett