Line 25: Line 25:
  
 
=Solutions of all questions=
 
=Solutions of all questions=
 +
  
  
Line 51: Line 52:
  
 
<math>
 
<math>
\[k = \bigg(E/\alpha\bigg)^{\frac{1}{2}}\]
+
k = \bigg(E/\alpha\bigg)^{\frac{1}{2}}
 
</math>
 
</math>
  
 
<math>
 
<math>
\[\therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\]
+
\therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}
 
</math>
 
</math>
  
Line 63: Line 64:
 
  &=\frac{1}{4\pi \alpha}
 
  &=\frac{1}{4\pi \alpha}
 
  \end{align*}
 
  \end{align*}
 +
</math>
 
   
 
   
 
   --------------------------------------------------------------------------------------
 
   --------------------------------------------------------------------------------------
Line 75: Line 77:
 
</math>
 
</math>
  
[[Image:1.png|Alt text|672x374px]]
+
[[Image:MN081.png|Alt text|300x300px]]
  
 
<math>
 
<math>
\[V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}\]
+
V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}
 
</math>
 
</math>
  
 
<math>
 
<math>
  \[V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*}\]
+
  V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*}
 
</math>
 
</math>
  
 
at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.
 
at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.
  
[[Image:2.png|Alt text|672x374px]]
+
[[Image:MN082.png|Alt text|300x300px]]
  
 
<math>
 
<math>
\[x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2}\]
+
x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2}
 
</math>
 
</math>
  
 
<math>
 
<math>
\[\therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2}\]
+
\therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2}
 
</math>
 
</math>
  
At $t = \tau_1$; electron will be at $x(\tau_1).$ For the next cycle; this position will be the initial one.
+
At <math>t = \tau_1</math>; electron will be at <math>x(\tau_1).</math> For the next cycle; this position will be the initial one.
  
 
   --------------------------------------------------------------------------------------
 
   --------------------------------------------------------------------------------------
Line 103: Line 105:
 
   
 
   
 
  <math>
 
  <math>
  \[v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}\]
+
  v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}
 
  </math>
 
  </math>
 
   
 
   
 
<math>
 
<math>
  \[\therefore \mu = \frac{v_{avg}}{E}\]
+
  \therefore \mu = \frac{v_{avg}}{E}
 
  </math>
 
  </math>
 
   
 
   
Line 113: Line 115:
 
   
 
   
 
  <math>
 
  <math>
  \[v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}\]
+
  v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}
 
   </math>
 
   </math>
 
    
 
    
 
<math>
 
<math>
\[\therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}.\]
+
\therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}.
 
</math>
 
</math>
  
Line 123: Line 125:
 
  e)
 
  e)
 
   
 
   
  \noindent For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
+
  For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
 
  Ans: ii
 
  Ans: ii
 
   
 
   

Revision as of 18:15, 30 July 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2008



Questions

All questions are in this link


Solutions of all questions

a)

$ \begin{align*} \frac{1}{m^*} &= \frac{1}{\hslash^2}\frac{d^2E}{dk^2} \\ &=\frac{1}{\hslash^2}\frac{d^2}{dk^2}(\alpha k^2) \\ &=2\alpha/\hslash^2 \\ \therefore m^* &= \frac{\hslash^2}{2\alpha} \end{align*} $

------------------------------------------------------------------------------------
b)

$ \begin{align*} g(E) &=\frac{\pi(k+\triangle k)^2 - \pi k^2}{\frac{2\pi}{W}\cdot\frac{2\pi}{L}}\cdot\frac{1}{\triangle E}\cdot\frac{1}{WL}\\ &\approx \frac{1}{4\pi^2}\cdot(\pi\cdot2k\triangle k)\cdot\frac{1}{\triangle E}\\ &=\frac{1}{2\pi}k\frac{\triangle k}{\triangle E}\approx = \frac{1}{2\pi}k\frac{dk}{dE} \end{align*} $

$ k = \bigg(E/\alpha\bigg)^{\frac{1}{2}} $

$ \therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}} $

$ \begin{align*} \therefore g(E) &= \frac{1}{2\pi}\cdot\frac{E^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}}\cdot\frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\\ &=\frac{1}{4\pi \alpha} \end{align*} $

 --------------------------------------------------------------------------------------
c)

$ \begin{align*} F&=-qE=qE_x\:\:\:\:\:\:\:\:\:\:\text{(+x direction)}\\ F &=m^*a = qE_x\\ \therefore a_{max} &=\frac{qE_x}{m^*}=a \:\:\:\:\:\:\:\:\:\:\text{(constant)} \end{align*} $

Alt text

$ V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*} $

$ V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*} $

at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.

Alt text

$ x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2} $

$ \therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2} $

At $ t = \tau_1 $; electron will be at $ x(\tau_1). $ For the next cycle; this position will be the initial one.

 --------------------------------------------------------------------------------------
d)

$   v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}   $

$ \therefore \mu = \frac{v_{avg}}{E} $

So, we need to find avg. velocity and divide by the constant electric field value to find mobility.

$   v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}    $
 

$ \therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}. $

 --------------------------------------------------------------------------------------
e)

For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
Ans: ii



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood