Line 31: Line 31:
  
 
<gallery>
 
<gallery>
File:dynamic.png|Caption1
+
File:dynamic.png|pseudo code for dynamic programming
 
</gallery>
 
</gallery>
  
  
<math>
 
\KwData{river stretch $L$, possible sites for docks:$x_1, x_2, x_3, ..., x_n$ , the possible revenue for each dock: $r_1, r_2, r_3, ..., r_n$ }
 
\KwResult{The subset of docks that yields the greatest total revenue, with the restriction that the distance between each two docks are no less than 5 miles  }
 
initialization: $L[<=0]=0$, $R[<=0]=0$, $x_0 = -\infty$, $r_0=0$\;
 
\For {$i = 1$ to $n$}{
 
  read $x_i$\;
 
  \eIf{$|x_i-x_{L[i-1]}| >=5$}{
 
  $R[i]=R[i-1]+r_i$\;
 
  $L[i]=i$\;
 
  }{
 
 
 
  \For {$k=i-1$ down to $1$}{
 
  \If{$|k_k - x_i| >=5$}{
 
  \eIf{$R[k]+r_i > R[i-1]$}{
 
  $R[i]=R[k]+r_i$\;
 
  $L[i]=i$\;
 
                    }
 
  {$R[i]=R[i-1]$\;
 
  $L[i]=L[i-1]$\;
 
            }
 
            Break;
 
  }
 
  }
 
  }
 
}
 
\caption{Find the subset of docks with maximum revenue}
 
</math>
 
 
In the end of the program, <math>R[n]</math> will be the maximum revenue, and L[n], L[L[n]], ... will be the indices of locations to choose.
 
In the end of the program, <math>R[n]</math> will be the maximum revenue, and L[n], L[L[n]], ... will be the indices of locations to choose.
  

Revision as of 17:38, 20 July 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

This problem can be solved using dynamic programming. For each docks $ x_i $, compute the revenue from $ x_1 $ to $ x_i $, if $ x_i $ is selected, and the remaining docks $ x_{i+1} $ to $ x_n $, if $ x_i $ is not selected.

$ R[i] $: denote the total revenue using only sites $ x_1, \dots , x_i $.

$ L[i] $: denote $ i $ with the greatest value such that $ x_i $ is used for the solution in $ R[i] $.

Initially, $ L[<=0]=0 $, $ R[<=0]=0 $, $ x_0 = -\infty $, $ r_0=0 $. The pseudo code for dynamic programming is showing below. Note we use bottom up to fill up $ R $ and $ L $.


In the end of the program, $ R[n] $ will be the maximum revenue, and L[n], L[L[n]], ... will be the indices of locations to choose.


Back to QE CE question 2, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett