(Created page with "Category:ECE Category:QE Category:CE Category:problem solving Category:algorithms <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying...")
 
Line 29: Line 29:
 
Initially, <math>L[<=0]=0</math>, <math>R[<=0]=0</math>, <math>x_0 = -\infty</math>, <math>r_0=0</math>.
 
Initially, <math>L[<=0]=0</math>, <math>R[<=0]=0</math>, <math>x_0 = -\infty</math>, <math>r_0=0</math>.
 
The pseudo code for dynamic programming is showing below. Note we use bottom up to fill up <math>R</math> and <math>L</math>.
 
The pseudo code for dynamic programming is showing below. Note we use bottom up to fill up <math>R</math> and <math>L</math>.
 +
 +
<gallery>
 +
File:dynamic.png|Caption1
 +
</gallery>
 +
  
 
<math>
 
<math>

Revision as of 17:36, 20 July 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

This problem can be solved using dynamic programming. For each docks $ x_i $, compute the revenue from $ x_1 $ to $ x_i $, if $ x_i $ is selected, and the remaining docks $ x_{i+1} $ to $ x_n $, if $ x_i $ is not selected.

$ R[i] $: denote the total revenue using only sites $ x_1, \dots , x_i $.

$ L[i] $: denote $ i $ with the greatest value such that $ x_i $ is used for the solution in $ R[i] $.

Initially, $ L[<=0]=0 $, $ R[<=0]=0 $, $ x_0 = -\infty $, $ r_0=0 $. The pseudo code for dynamic programming is showing below. Note we use bottom up to fill up $ R $ and $ L $.


$ \begin{algorithm}[H] \KwData{river stretch $L$, possible sites for docks:$x_1, x_2, x_3, ..., x_n$ , the possible revenue for each dock: $r_1, r_2, r_3, ..., r_n$ } \KwResult{The subset of docks that yields the greatest total revenue, with the restriction that the distance between each two docks are no less than 5 miles } initialization: $L[<=0]=0$, $R[<=0]=0$, $x_0 = -\infty$, $r_0=0$\; \For {$i = 1$ to $n$}{ read $x_i$\; \eIf{$|x_i-x_{L[i-1]}| >=5$}{ $R[i]=R[i-1]+r_i$\; $L[i]=i$\; }{ \For {$k=i-1$ down to $1$}{ \If{$|k_k - x_i| >=5$}{ \eIf{$R[k]+r_i > R[i-1]$}{ $R[i]=R[k]+r_i$\; $L[i]=i$\; } {$R[i]=R[i-1]$\; $L[i]=L[i-1]$\; } Break; } } } } \caption{Find the subset of docks with maximum revenue} \end{algorithm} $ In the end of the program, $ R[n] $ will be the maximum revenue, and L[n], L[L[n]], ... will be the indices of locations to choose.


Back to QE CE question 2, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood