Line 1: Line 1:
 
\begin{equation}
 
\begin{equation}
A=\left[
+
H_x=\frac{1}{3}\times{
\begin{matrix}
+
\left[ \begin{array}{ccc}
1&2&3&\\
+
1 & 0 & -1\\
3&4&4&\\
+
1 & 0 & -1\\
5&4&4&
+
1 & 0 & -1
\end{matrix}
+
\end{array}
\right]
+
\right ]},
 +
H_y=\frac{1}{3}\times{
 +
\left[ \begin{array}{ccc}
 +
1 & 1 & 1\\
 +
0& 0 & 0\\
 +
1 & 1 & 1
 +
\end{array}
 +
\right ]}
 
\end{equation}
 
\end{equation}

Revision as of 00:49, 16 May 2017

\begin{equation} H_x=\frac{1}{3}\times{ \left[ \begin{array}{ccc} 1 & 0 & -1\\ 1 & 0 & -1\\ 1 & 0 & -1 \end{array} \right ]}, H_y=\frac{1}{3}\times{ \left[ \begin{array}{ccc} 1 & 1 & 1\\ 0& 0 & 0\\ 1 & 1 & 1 \end{array} \right ]} \end{equation}

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett