Line 121: | Line 121: | ||
---- | ---- | ||
===Related Problem=== | ===Related Problem=== | ||
− | Consider | + | Consider the following 2-D LSI systems. The first system (S1) has input x(m, n) and output y(m, n), and the second system (S2) has input y(m, n) and output z(m, n). |
− | + | ||
− | The | + | <center> <math>\begin{align} |
− | + | & y(m,n)=ay(m,n-1)+x(m,n)(S1) \\ | |
− | + | & z(m,n)=bz(m-1,n)+y(m,n)(S2) \\ | |
− | + | \end{align}</math></center> | |
− | + | ||
− | + | The third system (S3) is formed by the composition of (S1) and (S2) with input x(m, n) and output z(m,n) and impulse response <math>{{h}_{3}}(m,n)</math>. | |
− | + | ||
− | </math> | + | |
− | a) | + | a) Calculate the 2-D impulse response, <math>{{h}_{1}}(m,n)</math>, of the first system (S1). |
− | b) | + | b) Calculate the 2-D impulse response, <math>{{h}_{2}}(m,n)</math>, of the second system (S2). |
− | + | ||
− | + | ||
− | c) | + | c) Calculate the 2-D impulse response, <math>{{h}_{3}}(m,n)</math>, of the complete system (S3). |
+ | d) Calculate the 2-D transfer function, <math>{{H}_{1}}({z}_{1},{z}_{2})</math>, of the first system (S1). | ||
+ | |||
+ | e) Calculate the 2-D transfer function, <math>{{H}_{3}}({z}_{1},{z}_{2})</math>, of the first system (S3). | ||
+ | |||
+ | Refer to [https://engineering.purdue.edu/~bouman/ece637/previous/ece637S2014/exams/exam1/exam.pdf <u>ECE637 Spring 2014 Exam1 Problem1</u>].<br> | ||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]: | [[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]: |
Revision as of 11:02, 2 May 2017
Communication Networks Signal and Image processing (CS)
Solution1:
a)
$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}{a}_{n}\delta (m) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m,n-j)=\left\{ \begin{matrix} 1\qquad n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $
b)
$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,n)=}{b}_{m}\delta (n) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m-i,n)=\left\{ \begin{matrix} 1\ m=i;\ n=0 \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $
c)
$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}^{{}}\delta (m-i,n-j)}}={{b}_{m}}\ {{a}_{n}} \\ & z(m,n)=\sum\limits_{i=-N}^{N}{{{b}_{i}}\ y(m-i,n)=}\sum\limits_{i=-N}^{N}{{{b}_{i}}\ \left( \sum\limits_{j=-N}^{N}{{{a}_{j}}\ x(m-i,n-j)} \right)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ x(m-i,n-j)}}} \\ & \delta (m-i,n-j)=\left\{ \begin{matrix} 1\ m=i;\ n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $
d)
Number of multiplies per output point to implement each individual system = 2N+1 So, The number of multiplies per output point to implement each of the two individual systems is 2(2N+1) = 4N+2.
Number of multiplies per output point to implement the complete system with a single convolution is $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $
e)
Implementing the two systems in sequence requires less computation, but it is more complex and more sensitive to noise. Implementing the two systems in a single complete system requires more computation, but it is simpler, less sensitive to noise, and more stable.
Solution 2:
a)
$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m)\ \delta(n-j)=}= {a}_{n}\ \delta (m) \\ \end{align} $
b)
$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,j)=}\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i)\ \delta(n)=}= {b}_{m}\ \delta (n) \\ \end{align} $
c)
$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i,n-j)}}=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i)\ \delta (n-j)}}={{b}_{m}}\ {{a}_{n}} \\ \end{align} $
d)
Individually: $ 2(2N+1)=4N+2 $
Complete system: $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $
For the complete system with a single convolution, as in each filter location, we will multiply both $ a_j $ and $ b_i $, so we need $ 2(2N+1)^2 $ multiplies in total. But if the student consider that we pre-process the system and calculate the complete filter parameters in advance, then $ (2N+1)^2 $ multiplies is correct.
e)
Fewer multipliers are required when implementing individually, but the system is more complicated. More complete for the complete system.
Related Problem
Consider the following 2-D LSI systems. The first system (S1) has input x(m, n) and output y(m, n), and the second system (S2) has input y(m, n) and output z(m, n).
The third system (S3) is formed by the composition of (S1) and (S2) with input x(m, n) and output z(m,n) and impulse response $ {{h}_{3}}(m,n) $.
a) Calculate the 2-D impulse response, $ {{h}_{1}}(m,n) $, of the first system (S1).
b) Calculate the 2-D impulse response, $ {{h}_{2}}(m,n) $, of the second system (S2).
c) Calculate the 2-D impulse response, $ {{h}_{3}}(m,n) $, of the complete system (S3).
d) Calculate the 2-D transfer function, $ {{H}_{1}}({z}_{1},{z}_{2}) $, of the first system (S1).
e) Calculate the 2-D transfer function, $ {{H}_{3}}({z}_{1},{z}_{2}) $, of the first system (S3).
Refer to ECE637 Spring 2014 Exam1 Problem1.