(Created page with "Category:ECE Category:QE Category:FO Category:problem solving Category:Statics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exa...") |
|||
Line 22: | Line 22: | ||
==Question== | ==Question== | ||
[[Image:Q1FO12013.png|Alt text|500x500px]] | [[Image:Q1FO12013.png|Alt text|500x500px]] | ||
+ | [[Image:Q1FO12013D.png|Alt text|500x500px]] | ||
=Solution= | =Solution= | ||
write it here | write it here |
Revision as of 20:15, 24 April 2017
Fields and Optics (FO)
Question 1: Statics 1
August 2013
Question
Solution
write it here
Question
Part 1.
Consider $ n $ independent flips of a coin having probability $ p $ of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if $ n=5 $ and the sequence $ HHTHT $ is observed, then there are 3 changeovers. Find the expected number of changeovers for $ n $ flips. Hint: Express the number of changeovers as a sum of Bernoulli random variables.
- Click here to view student answers and discussions
Part 2.
Let $ X_1,X_2,... $ be a sequence of jointly Gaussian random variables with covariance
$ Cov(X_i,X_j) = \left\{ \begin{array}{ll} {\sigma}^2, & i=j\\ \rho{\sigma}^2, & |i-j|=1\\ 0, & otherwise \end{array} \right. $
Suppose we take 2 consecutive samples from this sequence to form a vector $ X $, which is then linearly transformed to form a 2-dimensional random vector $ Y=AX $. Find a matrix $ A $ so that the components of $ Y $ are independent random variables You must justify your answer.
- Click here to view student answers and discussions
Part 3.
Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.
- Click here to view student answers and discussions
Part 4.
Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf
$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.
Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.
- Click here to view student answers and discussions