Line 12: Line 12:
 
We'll start off with some basic concepts related to the problem and formulate a more rigorous statement of the problem.
 
We'll start off with some basic concepts related to the problem and formulate a more rigorous statement of the problem.
  
<math>\ f'(x) = 0 \text{almost everywhere} </math>
+
<math> \text{Taylor Series in } d \text{ variables } =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin}
 +
\frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\!</math>
  
 
'''Importance'''
 
'''Importance'''

Revision as of 11:15, 24 April 2016

Group A: The Graph Isomorphism Problem

The Graph Isomorphism Problem

Introduction

The graph isomorphism problem has been a long-standing problem in complexity theory for the last four decades. The statement of the problem is fairly simple: Given any two finite graphs that may appear to be different, is there an "easy" way to tell whether or not the two graphs are the same? We'll look at the statement of the problem in a slightly more rigorous setting, discuss the importance of the problem in other fields, as well as some recent progress made on the problem by a professor at the University of Chicago.

Basic concepts

We'll start off with some basic concepts related to the problem and formulate a more rigorous statement of the problem.

$ \text{Taylor Series in } d \text{ variables } =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\! $

Importance

Recent developments

Closing Remarks

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009