Line 25: Line 25:
 
P((Z(t)=0) = P(Z(0)=0, N(t)=Even) + P(Z(0)=1, N(t)=Odd)\\
 
P((Z(t)=0) = P(Z(0)=0, N(t)=Even) + P(Z(0)=1, N(t)=Odd)\\
 
= pP( N(t)=Even) + (1-p)P( N(t)=Odd)
 
= pP( N(t)=Even) + (1-p)P( N(t)=Odd)
=p\sum_{m={0,1, 2, ...}P(N(t) = 2m)+ (1-p)\sum_{n=0,1,2,...}P(N(t)=2n-1)
+
=p\sum_{m=0,1, 2, ...}P(N(t) = 2m)+ (1-p)\sum_{n=0,1,2,...}P(N(t)=2n-1)
 
</math>
 
</math>
 
----
 
----

Revision as of 00:24, 4 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution

$ P((Z(t)=0) = P(Z(0)=0, N(t)=Even) + P(Z(0)=1, N(t)=Odd)\\ = pP( N(t)=Even) + (1-p)P( N(t)=Odd) =p\sum_{m=0,1, 2, ...}P(N(t) = 2m)+ (1-p)\sum_{n=0,1,2,...}P(N(t)=2n-1) $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch