Line 6: Line 6:
  
 
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) =  
 
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) =  
= [[QE637_T|Question 5, August 2012]], Part 2=
+
= [[QE637_T|ECE-QE%20CS5-2015]], Part 2=
  
 
:[[ CS5_2015_Aug_prob1_solution | Part 1 ]],[[ CS5_2015_Aug_prob2_solution | 2 ]]
 
:[[ CS5_2015_Aug_prob1_solution | Part 1 ]],[[ CS5_2015_Aug_prob2_solution | 2 ]]

Revision as of 18:27, 2 December 2015


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

ECE-QE%20CS5-2015, Part 2

Part 1 , 2

Solution:

a) Since $ Y_{x} $ is Poisson random variable, $ E[Y_{x}]=\lambda_{x} $.

(b) For Poisson r.v., $ E[Y_{x}]=Var[Y_{x}]\\ \Rightarrow Var[Y_{x}]=\lambda_{x} $

(c) The attenuation of photons obeys:

$ \frac{\partial \lambda_{x}}{\partial x}=-\mu(x)\lambda_{x} $

(d) The solution is:

$ \lambda_{x}=\lambda_{0}e^{-\int_0^x \mu(t)\partial t} $ (e) Based on the result of (d)

$ \lambda_{T}=\lambda_{0}e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \frac{\lambda_{T}}{\lambda_{0}}=e^{-\int_0^T \mu(t)\partial t}\\ \Rightarrow \int_0^T \mu(t)\partial t=-ln{\frac{\lambda_{T}}{\lambda_{0}}}=ln{\frac{\lambda_{0}}{\lambda_{T}}} $


Back to ECE QE page:

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood