(Created page with "=Homework 11, ECE438, Fall 2015, Prof. Boutin= Harcopy of your solution due in class, Monday November 30, 2015 ---- ==Question 1== Consider the following...")
 
 
Line 18: Line 18:
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
  
c) Compute the <SPAN STYLE="text-decoration: line-through;"> CSFT</span> <span style="color:red"> DSFT </span> H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
+
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
Line 54: Line 54:
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
  
c) Compute the <SPAN STYLE="text-decoration: line-through;"> CSFT</span> <span style="color:red"> DSFT </span> H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
+
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
Line 90: Line 90:
 
b) Is this filter separable? Answer yes/no and justify your answer.  
 
b) Is this filter separable? Answer yes/no and justify your answer.  
  
c) Compute the <SPAN STYLE="text-decoration: line-through;"> CSFT</span> <span style="color:red"> DSFT </span> H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
+
c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?
  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  
 
d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?  

Latest revision as of 10:50, 20 November 2015

Homework 11, ECE438, Fall 2015, Prof. Boutin

Harcopy of your solution due in class, Monday November 30, 2015


Question 1

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\ n=0&\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\ n=-1&\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \end{array} $

a) Write a difference equation that can be used to implement this filter.

b) Is this filter separable? Answer yes/no and justify your answer.

c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?

d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $


Question 2

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{9} & -\frac{1}{9} & -\frac{1}{9} \\ n=0&-\frac{1}{9} & \frac{8}{9} & -\frac{1}{9} \\ n=-1&-\frac{1}{9} &- \frac{1}{9} & -\frac{1}{9} \end{array} $

a) Write a difference equation that can be used to implement this filter.

b) Is this filter separable? Answer yes/no and justify your answer.

c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?

d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $


Question 3

Consider the following filter:

$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ n=0&-\frac{1}{4} & 1 & -\frac{1}{4} \\ n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{array} $

a) Write a difference equation that can be used to implement this filter.

b) Is this filter separable? Answer yes/no and justify your answer.

c) Compute the DSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v). What are the characteristics of this filter (low-pass, band-pass, or high-pass)?

d) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?

$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $



Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2015, Prof. Boutin

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009