Line 133: Line 133:
  
 
* It would be better to have a clear definition of <math>\tau</math>.
 
* It would be better to have a clear definition of <math>\tau</math>.
 
 
* When computing the mean of <math>\mathbf{Y}</math>, it would be clearer to add a description about why the first equality is true.
 
* When computing the mean of <math>\mathbf{Y}</math>, it would be clearer to add a description about why the first equality is true.
 
 
* The second equality is ambiguous. <math>\mu_x</math> should not be moved out alone from the integration.
 
* The second equality is ambiguous. <math>\mu_x</math> should not be moved out alone from the integration.
  

Latest revision as of 00:53, 31 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2011



Part 4

Jump to Part 1,2,3


Assume that $ \mathbf{X}(t) $ is a zero-mean continuous-time Gaussian white noise process with autocorrelation function

                $ R_{\mathbf{XX}}(t_1,t_2)=\delta(t_1-t_2). $

Let $ \mathbf{Y}(t) $ be a new random process ontained by passing $ \mathbf{X}(t) $ through a linear time-invariant system with impulse response $ h(t) $ whose Fourier transform $ H(\omega) $ has the ideal low-pass characteristic

               $ H(\omega) = \begin{cases} 1, & \mbox{if } |\omega|\leq\Omega,\\ 0, & \mbox{elsewhere,} \end{cases} $

where $ \Omega>0 $.

a) Find the mean of $ \mathbf{Y}(t) $.

b) Find the autocorrelation function of $ \mathbf{Y}(t) $.

c) Find the joint pdf of $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ for any two arbitrary sample time $ t_1 $ and $ t_2 $.

d) What is the minimum time difference $ t_1-t_2 $ such that $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are statistically independent?


Solution 1:

a)

$ \begin{align} E[Y(t)] &= E[X(t)\ast h(t)] &\\ &= E\left[\int_{-\infty}^\infty x(\alpha)h(t-\alpha)d\alpha\right] &\\ &= \int_{-\infty}^\infty E[X(\alpha)]h(t-\alpha)d\alpha &\\ &= \int_{-\infty}^\infty 0\cdot h(t-\alpha)d\alpha &\\ &= 0 & \end{align} $

b)

$ R_{XX}(t_1,t_2)=\delta(t_1-t_2)\Rightarrow X(t) $ is wide-sense stationary

$ \Rightarrow R_{XX}(\tau)= R_{XX}(t,t+\tau)=\delta(\tau) $

$ \Rightarrow S_{XX}(\omega)= \int_{-\infty}^\infty R_{XX}(\tau)e^{-i\omega\tau}d\tau = \int_{-\infty}^\infty \delta(\tau)e^{-i\omega\tau}d\tau = 1 $

$ \Rightarrow S_{YY}(\omega)= S_{XX}\cdot\vert H(\omega)\vert^2 = 1\cdot H(\omega)\cdot H^\ast(\omega) = H(\omega) $

$ \begin{align} \Rightarrow R_{YY}(\tau)&=\frac{1}{2\pi}\int_{-\infty}^\infty S_{YY}(\omega)e^{i\omega\tau}d\omega &\\ &= \frac{1}{2\pi}\int_{-\Omega}^\Omega e^{i\omega\tau}d\omega &\\ &= \frac{1}{2\pi}\cdot\frac{1}{i\tau}e^{i\omega\tau}\vert_{\omega=-\Omega}^\Omega &\\ &= \frac{1}{\pi\tau}\left(\frac{1}{2i}\left(e^{i\Omega\tau}-e^{-i\Omega\tau}\right)\right) &\\ &= \frac{\text{sin}\Omega\tau}{\pi\tau} & \end{align} $

c)

Since $ \mathbf{X}(t) $ is Gaussian random process, and $ h(t) $ is the impulse response of a linear time-invariant system.

$ \Rightarrow \mathbf{Y}(t) $ is also a Gaussian random process.

$ \Rightarrow \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are jointly Gaussian distributed for any $ t_1 $, $ t_2 $, $ t_1\neq t_2 $.

$ \Rightarrow $ The joint pdf

$ f_{Y(t_1)Y(t_2)}(y_1,y_2)=\frac{1}{2\pi\sigma_{Y_1}\sigma_{Y_2}\sqrt{1-r^2}}\text{exp}\left\{\frac{-1}{2(1-r^2)}\left(\frac{(y_1-\eta_{Y_1})^2}{\sigma_{Y_1}^2}-2r\frac{(y_1-\eta_{Y_1})(y_2-\eta_{Y_2})}{\sigma_{Y_1}\sigma_{Y_2}}+\frac{(y_2-\eta_{Y_2})^2}{\sigma_{Y_2}^2}\right)\right\} $,

where

$ \sigma_{Y_1}=\sigma_{Y_2}=\sqrt{R_{YY}(0)}=\sqrt{\lim_{\tau \to 0}\frac{\text{sin}\Omega\tau}{\pi\tau}}=\sqrt{\frac{\Omega}{\pi}} $,

$ \eta_{Y_1}=\eta_{Y_2}=E[Y(t)]=0 $,

$ r=\frac{\text{cov}(Y(t_1),Y(t_2))}{\sigma_{Y_1}\sigma_{Y_2}}=\frac{R_{YY}(t_1-t_2)}{\sigma_{Y_1}\sigma_{Y_2}}=\frac{\frac{\text{sin}\Omega(t_1-t_2)}{\pi(t_1-t_2)}}{\frac{\Omega}{\pi}}=\frac{\text{sin}\Omega(t_1-t_2)}{\Omega(t_1-t_2)} $.

d)

$ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are jointly Gaussian random variables.

$ \Rightarrow \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are statistically independent if and only if $ \text{cov}(Y(t_1),Y(t_2))=0 $.

$ \Rightarrow R_{YY}(t_1-t_2)=0 $

$ \Rightarrow \frac{\text{sin}\Omega(t_1-t_2)}{\pi(t_1-t_2)}=0 \Rightarrow \text{sin}\Omega(t_1-t_2)=0 \text{ and } t_1\neq t_2 $

$ \Rightarrow \Omega(t_1-t_2)=n\pi \text{, } n\in\mathbb{Z} \text{ and } t_1\neq t_2 $

$ \Rightarrow t_1-t_2=n\frac{\pi}{\Omega} \text{, } n\in\mathbb{Z}/\{0\} $

$ \Rightarrow $ The minimum time difference is $ \frac{\pi}{\Omega} $ as $ n=1 $.


Solution 2:

a)

$ h(t) $ is a LTI system and $ \mathbf{X}(t) $ is WSS because $ R_{XX}(t_1,t_2)=\delta(t_1-t_2) $,

where $ R_{XX} $ only depends on $ \tau $.

$ \mu_{y}(t)=\int_{-\infty}^{\infty}\mu_x(t-\alpha)h(\alpha)d\alpha=\mu_x\int_{-\infty}^{\infty}(t-\alpha)h(\alpha)d\alpha=0 $

Comments:

  • It would be better to have a clear definition of $ \tau $.
  • When computing the mean of $ \mathbf{Y} $, it would be clearer to add a description about why the first equality is true.
  • The second equality is ambiguous. $ \mu_x $ should not be moved out alone from the integration.

b)

Because this is a LTI system,

$ S_y(\omega)=S_x(\omega)|H(\omega)|^2=\begin{cases}1, & \text{for } |\omega|\leq\Omega\\0, &\text{elsewhere}\end{cases} $.

Therefore,

$ R_y(\tau)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_x(\omega)e^{j\omega\tau}d\omega=\frac{1}{2\pi}\int_{-\Omega}^{\Omega}e^{j\omega\tau}d\omega=\frac{\text{sin}(\Omega\tau)}{\pi\tau} $.

Comments:

  • It would be nicer to illustrate that the power spectral density of $ \mathbf{X} $, $ S_x(\omega) $, is $ 1 $.

c)

$ \mathbf{X} $ is a Gaussian process with variance $ \sigma^2=1 $, $ \mu_x=0 $. From proof, we know if $ \mathbf{X} $ is a Gaussian process and $ H $ is an LTI system. The output $ \mathbf{Y} $ will be a Gaussian process. The joint Gaussian pdf of $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ is

$ f_{yy}=\frac{1}{2\pi\sigma_y^2}\text{exp}\left[2(1-r)\frac{y^2}{\sigma_y^2}\left(\frac{-1}{2(1-r)}\right)\right] $,

where $ r=\frac{R_y(\tau)}{\sigma_y^2} $.

Comments:

  • The concept is right, but the the final equation is not the joint Gaussian pdf of $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $. The arguments of the pdf should be $ y(t_1) $ and $ y(t_2) $, instead of $ y $.

d)

If $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are independent, then $ r=0 $. That is

$ \frac{\text{sin}(\Omega\tau)}{\pi\tau}=0 $, when $ \omega\tau=n\pi $, where $ n=1,2,3,... $.

Therefore, the minimize $ \tau=\frac{\pi}{\Omega} $.


Related Problems:

a) Find the autocovariance of $ [Y(t) Y(2t) Y(3t) \cdots Y(nt)]^T $, where $ t=\frac{2\pi}{\Omega} $.

b) If $ H(\omega)=\begin{cases}\vert \omega\vert^{1/2}, & \vert \omega\vert\leq\Omega\\0, &\text{elsewhere}\end{cases} $, redo the original problem (b) and (c).


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang