Line 86: Line 86:
 
----
 
----
  
"Communication, Networks, Signal, and Image Processing" (CS)- Question 3, August 2011  
+
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011  
  
 
Go to  
 
Go to  

Revision as of 19:24, 30 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2011



Part 3

Jump to Part 1,2,4


Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.


Solution 1:

Suppose $ \mathbf{X} $ and $ \mathbf{Y} $ are jointly distributed Gaussian random variables with jointly pdf

$ f_{X,Y}(x,y)=\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{\frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\} $

Then, compute the characteristic function of $ \mathbf{X}+\mathbf{Y} $:

$ \begin{align} \Phi_{X+Y}(\omega) &= E[e^{i\omega(X+Y)}]\\ &=\int_{-\infty}^\infty\int_{-\infty}^\infty e^{i\omega(x+y)}f_{X,Y}(x,y)dxdy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x}f_{X,Y}(x,y)dx\right)dy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{ \frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\}dx\right)dy \\ &=\int_{-\infty}^\infty \frac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{\sqrt{2\pi}\sigma_X\sqrt{1-r^2}}\text{exp}\left\{-\frac{(x-(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y)))^2}{2(1-r^2)\sigma_X^2}\right\}dx\right)\text{exp}\left\{-\frac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \end{align} $

We know that the characteristic function of a Gaussian random variable with mean $ \mu $ and variance $ \sigma^2 $ is $ (e^{i\omega\mu-\frac{1}{2}\sigma^2\omega^2}) $. Then,

$ \begin{align} \Phi_{X+Y}(\omega) &= \int_{-\infty}^\infty \dfrac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(e^{i\omega(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y))-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\right)\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\int_{-\infty}^\infty e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)y}\cdot\dfrac{1}{\sqrt{2\pi}\sigma_Y}\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\cdot e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)\eta_Y-\frac{1}{2}\sigma_Y^2\omega^2(1+\frac{\sigma_X}{\sigma_Y}r)^2} \\ &= e^{i\omega(\eta_X+\eta_Y)-\frac{1}{2}\omega^2(\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2)} \end{align} $

So, $ \mathbf{X}+\mathbf{Y} $ is a Gaussian random variable with mean $ (\eta_X+\eta_Y) $ and variance $ (\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2) $


Solution 2:

Let $ Z=X+Y $, where $ X\sim(\mu_1,\sigma_1^2) $ and $ Y\sim(\mu_2,\sigma_2^2) $.

The characteristic function

$ E(e^Z)=E(e^{X+Y})=e^{i(\mu_1+\mu_2)t-\frac{1}{2}\left(\sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right)t^2} $

according to the property of jointly distributed Gaussian random variable.

$ \therefore Z\sim\left(\mu_1+\mu_2, sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right) $ according to uniqueness of characteristic function.

Comments:

  • The definition of the characteristic function is inaccurate. The characteristic function of random variable $ Z $ should be $ E[e^{itZ}] $, instead of $ E[e^Z] $. However, the final formula of the characteristic function of $ Z $, a function of $ t $, is correct.
  • It would be nicer to mention that the characteristic function of a Gaussian random variable $ X $ is $ e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2} $, where $ \mu_X $ and $ \sigma_X^2 $ are mean and variance of random variable $ X $. That would make the uniqueness statement clearer.


Related Problems:

$ \mathbf{X} $ and $ \mathbf{Y} $ are two exponential random variables with different means, $ \lambda_X $ and $ \lambda_Y $, respectively. Show that $ \text{Min}(X,Y) $ is also an exponential random variable.


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett