Line 34: | Line 34: | ||
d) Find <math> P(Y=kX)\ </math>. | d) Find <math> P(Y=kX)\ </math>. | ||
+ | ---- | ||
+ | =Solution 1 (retrived from [[Automatic_Controls:Linear_Systems_(HKNQE_August_2007)_Problem_1|here]])= | ||
+ | *To find <math> P(min(X,Y)=k)\ </math>, let <math> Z = min(X,Y)\ </math>. Then finding the pmf of Z uses the fact that X and Y are iid | ||
+ | <math> P(Z=k) = P(X \ge k,Y \ge k) = P(X \ge k)P(Y \ge k) = P(X \ge k)^2 </math> | ||
− | + | <math> P(Z=k) = \left ( \sum_{i=k}^N \frac {1}{2^i} \right )^2 = \left ( \frac {1}{2^k} \right )^2 = \frac {1}{4^k} </math> | |
− | + | *To find <math> P(X=Y)\ </math>, note that X and Y are iid and summing across all possible i, | |
− | + | <math> P(X=Y) = \sum_{i=1}^\infty P(X=i, Y=i) = \sum_{i=1}^\infty P(X=i)P(Y=i) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math> | |
− | + | *To find <math> P(Y>X)\ </math>, again note that X and Y are iid and summing across all possible i, | |
− | + | <math> P(Y>X) = \sum_{i=1}^\infty P(Y>i, X=i) = \sum_{i=1}^\infty P(Y>i)P(x=i)</math> | |
− | + | ||
− | + | ||
− | + | :Next, find <math> P(Y<i)\ </math> | |
+ | <math> P(Y>i) = 1 - P(Y \le i) </math> | ||
− | + | <math> P(Y \le i) = \sum_{i=1}^\infty \frac {1}{2^i} = 1 + \frac {1}{2^i} </math> | |
− | + | <math> \therefore P(Y>i) = \frac {1}{2^i} </math> | |
− | <math | + | :Plugging this result back into the original expression yields |
+ | <math> P(Y<X) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math> | ||
− | : | + | *To find <math> P(Y=kX)\ </math>, note that X and Y are iid and summing over all possible combinations one arrives at |
+ | <math> P(Y=kX) = \sum_{i=1}^\infty i = 1^\infty P(Y=ki, X=i) = \sum_{i=1}^\infty P(Y=ki)P(X=i) </math> | ||
+ | :Thus, | ||
+ | <math> P(Y=kX) = \sum_{i=1}^\infty \frac {1}{2^{ki}} \frac {1}{2^i} = \sum_{i=1}^\infty \frac {1}{2^{(k+1)i}} = \frac {1}{2^{(k+1)}-1} </math> | ||
---- | ---- | ||
+ | ==Solution 2== | ||
+ | Write it here. | ||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Revision as of 09:49, 10 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2007
Question
X and Y are iid random variable with
$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $
a) Find $ P(min(X,Y)=k)\ $.
b) Find $ P(X=Y)\ $.
c) Find $ P(Y>X)\ $.
d) Find $ P(Y=kX)\ $.
Solution 1 (retrived from here)
- To find $ P(min(X,Y)=k)\ $, let $ Z = min(X,Y)\ $. Then finding the pmf of Z uses the fact that X and Y are iid
$ P(Z=k) = P(X \ge k,Y \ge k) = P(X \ge k)P(Y \ge k) = P(X \ge k)^2 $
$ P(Z=k) = \left ( \sum_{i=k}^N \frac {1}{2^i} \right )^2 = \left ( \frac {1}{2^k} \right )^2 = \frac {1}{4^k} $
- To find $ P(X=Y)\ $, note that X and Y are iid and summing across all possible i,
$ P(X=Y) = \sum_{i=1}^\infty P(X=i, Y=i) = \sum_{i=1}^\infty P(X=i)P(Y=i) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} $
- To find $ P(Y>X)\ $, again note that X and Y are iid and summing across all possible i,
$ P(Y>X) = \sum_{i=1}^\infty P(Y>i, X=i) = \sum_{i=1}^\infty P(Y>i)P(x=i) $
- Next, find $ P(Y<i)\ $
$ P(Y>i) = 1 - P(Y \le i) $
$ P(Y \le i) = \sum_{i=1}^\infty \frac {1}{2^i} = 1 + \frac {1}{2^i} $
$ \therefore P(Y>i) = \frac {1}{2^i} $
- Plugging this result back into the original expression yields
$ P(Y<X) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} $
- To find $ P(Y=kX)\ $, note that X and Y are iid and summing over all possible combinations one arrives at
$ P(Y=kX) = \sum_{i=1}^\infty i = 1^\infty P(Y=ki, X=i) = \sum_{i=1}^\infty P(Y=ki)P(X=i) $
- Thus,
$ P(Y=kX) = \sum_{i=1}^\infty \frac {1}{2^{ki}} \frac {1}{2^i} = \sum_{i=1}^\infty \frac {1}{2^{(k+1)i}} = \frac {1}{2^{(k+1)}-1} $
Solution 2
Write it here.