(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qu...")
 
 
Line 24: Line 24:
 
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  be i.i.d.  random variables with absolutely continuous probability distribution function <math class="inline">F\left(x\right)</math> . Let the random variable <math class="inline">\mathbf{Y}_{j}</math>  be the <math class="inline">j</math> -th order statistic of the <math class="inline">\mathbf{X}_{i}</math> 's. that is: <math class="inline">\mathbf{Y}_{j}=j\text{-th smallest of }\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\}</math> .  
 
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  be i.i.d.  random variables with absolutely continuous probability distribution function <math class="inline">F\left(x\right)</math> . Let the random variable <math class="inline">\mathbf{Y}_{j}</math>  be the <math class="inline">j</math> -th order statistic of the <math class="inline">\mathbf{X}_{i}</math> 's. that is: <math class="inline">\mathbf{Y}_{j}=j\text{-th smallest of }\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\}</math> .  
  
(a)
+
(a) What is another name for the first order statistic?
  
What is another name for the first order statistic?
+
(b) What is another name for the n/2  order statistic?
  
minimum
+
(c) Find the probability density function of the first order statistic. (You may assume n  is odd.)
 +
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 +
(a) minimum
  
 
(b)
 
(b)
 
What is another name for the n/2  order statistic?
 
  
 
sample median
 
sample median
  
 
(c)
 
(c)
 
Find the probability density function of the first order statistic. (You may assume n  is odd.)
 
 
 
<math class="inline">F_{\mathbf{Y}_{1}}\left(y\right)=P\left(\left\{ \mathbf{Y}_{1}\leq y\right\} \right)=1-P\left(\left\{ \mathbf{Y}_{1}>y\right\} \right)</math><math class="inline">=1-P\left(\left\{ \mathbf{X}_{1}>y\right\} \cap\left\{ \mathbf{X}_{2}>y\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}>y\right\} \right)</math><math class="inline">=1-\prod_{i=1}^{n}P\left(\mathbf{X}_{i}>y\right)=1-\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n}.</math>  
 
<math class="inline">F_{\mathbf{Y}_{1}}\left(y\right)=P\left(\left\{ \mathbf{Y}_{1}\leq y\right\} \right)=1-P\left(\left\{ \mathbf{Y}_{1}>y\right\} \right)</math><math class="inline">=1-P\left(\left\{ \mathbf{X}_{1}>y\right\} \cap\left\{ \mathbf{X}_{2}>y\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}>y\right\} \right)</math><math class="inline">=1-\prod_{i=1}^{n}P\left(\mathbf{X}_{i}>y\right)=1-\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n}.</math>  
  
 
<math class="inline">f_{\mathbf{Y}_{1}}\left(y\right)=\frac{d}{dy}F_{\mathbf{Y}_{1}}\left(y\right)=n\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n-1}f_{\mathbf{X}}\left(y\right).</math>
 
<math class="inline">f_{\mathbf{Y}_{1}}\left(y\right)=\frac{d}{dy}F_{\mathbf{Y}_{1}}\left(y\right)=n\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n-1}f_{\mathbf{X}}\left(y\right).</math>
 +
----

Latest revision as of 16:38, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2002



4. (20 pts)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ be i.i.d. random variables with absolutely continuous probability distribution function $ F\left(x\right) $ . Let the random variable $ \mathbf{Y}_{j} $ be the $ j $ -th order statistic of the $ \mathbf{X}_{i} $ 's. that is: $ \mathbf{Y}_{j}=j\text{-th smallest of }\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\} $ .

(a) What is another name for the first order statistic?

(b) What is another name for the n/2 order statistic?

(c) Find the probability density function of the first order statistic. (You may assume n is odd.)


Share and discuss your solutions below.


Solution 1

(a) minimum

(b)

sample median

(c) $ F_{\mathbf{Y}_{1}}\left(y\right)=P\left(\left\{ \mathbf{Y}_{1}\leq y\right\} \right)=1-P\left(\left\{ \mathbf{Y}_{1}>y\right\} \right) $$ =1-P\left(\left\{ \mathbf{X}_{1}>y\right\} \cap\left\{ \mathbf{X}_{2}>y\right\} \cap\cdots\cap\left\{ \mathbf{X}_{n}>y\right\} \right) $$ =1-\prod_{i=1}^{n}P\left(\mathbf{X}_{i}>y\right)=1-\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n}. $

$ f_{\mathbf{Y}_{1}}\left(y\right)=\frac{d}{dy}F_{\mathbf{Y}_{1}}\left(y\right)=n\left(1-F_{\mathbf{X}}\left(y\right)\right)^{n-1}f_{\mathbf{X}}\left(y\right). $


Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva