Line 108: Line 108:
 
|-
 
|-
 
| <math> \int\dfrac{dx}{sh ax(ch ax-1)}=-\dfrac{1}{2a}\ln th\dfrac{ax}{2}-\dfrac{1}{2a(ch ax-1)} +C</math>
 
| <math> \int\dfrac{dx}{sh ax(ch ax-1)}=-\dfrac{1}{2a}\ln th\dfrac{ax}{2}-\dfrac{1}{2a(ch ax-1)} +C</math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" |  Inverse Hyperbolic Sine ( arg sh x)
 +
|-
 +
|-
 +
| <math> \int\arg sh\dfrac{x}{a}dx=x\arg sh\dfrac{x}{a}-\sqrt{x^{2}+a^{2}} +C</math>
 +
|-
 +
| <math> \int x\arg sh\dfrac{x}{a} dx=\biggl(\dfrac{x^{2}}{2}+\dfrac{a^{2}}{4}\biggl)\arg sh\dfrac{x}{a}-\dfrac{x\sqrt{x^{2}+a^{2}}}{4} +C</math>
 +
|-
 +
| <math> \int x^{2}\arg sh\dfrac{x}{a} dx=\dfrac{x^{3}}{3}\arg sh\dfrac{x}{a}+\dfrac{(2a^{2-}x^{2})\sqrt{x^{2}+a^{2}}}{9} +C</math>
 +
|-
 +
| <math> \int\dfrac{\arg sh\dfrac{x}{a}}{x}dx=\Biggl\{\begin{array}{c}
 +
\dfrac{x}{a}-\dfrac{(\dfrac{x}{a})^{3}}{2\cdot3\cdot3}+\dfrac{1\cdot3(\dfrac{x}{a})^{5}}{2\cdot4\cdot5\cdot5}-\dfrac{1\cdot3\cdot5(\dfrac{x}{a})^{7}}{2\cdot4\cdot6\cdot7\cdot7}+\cdots,|x|<a\\
 +
\dfrac{\ln^{2}(\dfrac{2x}{a})}{2}-\dfrac{(\dfrac{a}{x})^{2}}{2\cdot2\cdot2}+\dfrac{1\cdot3(\dfrac{a}{x})^{4}}{2\cdot4\cdot4\cdot4}-\dfrac{1\cdot3\cdot5(\dfrac{a}{x})^{6}}{2\cdot4\cdot6\cdot6\cdot6}+\cdots, x>a\\
 +
\dfrac{\ln^{2}(\dfrac{-2x}{a})}{2}+\dfrac{(\dfrac{a}{x})^{2}}{2\cdot2\cdot2}-\dfrac{1\cdot3(\dfrac{a}{x})^{4}}{2\cdot4\cdot4\cdot4}+\dfrac{1\cdot3\cdot5(\dfrac{a}{x})^{6}}{2\cdot4\cdot6\cdot6\cdot6}+\cdots, x<-a\end{array} +C</math>
 +
|-
 +
| <math> \int\dfrac{\arg sh\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg sh\dfrac{x}{a}}{x}-\dfrac{1}{a}\ln\Biggl(\dfrac{a+\sqrt{x^{2}+a^{2}}}{x}\Biggl) +C</math>
 
|}
 
|}
 
----
 
----

Latest revision as of 16:42, 26 February 2015


Collective Table of Formulas

Indefinite Integrals with hyperbolic sine (sh x)

click here for more formulas


$ \int sh ax dx=\dfrac{ch ax}{a} +C $
$ \int x sh ax dx=\dfrac{x ch ax}{a}-\dfrac{sh ax}{a^{2}} +C $
$ \int x^{2} sh ax dx=(\dfrac{x^{2}}{a^{2}}+\dfrac{2}{a^{3}}) ch ax-\dfrac{2x}{a^{2}} sh ax +C $
$ \int\dfrac{sh ax}{x} dx=ax+\dfrac{(ax)^{3}}{3\cdot3!}+\dfrac{(ax)^{5}}{5\cdot5!}+\cdots +C $
$ \int\dfrac{sh ax}{x^{2}} dx=- \dfrac{sh ax}{x}+a \int\dfrac{ch ax}{x}dx +C $
$ \int\dfrac{dx}{sh ax}=\dfrac{1}{a}\ln th\dfrac{ax}{2} +C $
$ \int\dfrac{xdx}{sh ax}=\dfrac{1}{a^{2}}\{ax-\dfrac{(ax)^{3}}{18}+\dfrac{7(ax)^{5}}{1800}-\cdots+\dfrac{2(-1)^{n}(2^{2n}-1)B_{n}(ax)^{2n+1}}{(2n+1)!}\} +C $
$ \int sh^{2} ax dx=\dfrac{sh ax ch ax}{2a}-\dfrac{x}{2} +C $
$ \int x sh^{2} ax dx=\dfrac{x sh2ax}{4a}-\dfrac{ch2ax}{8a^{2}}-\dfrac{x^{2}}{4} +C $
$ \int\dfrac{dx}{sh^{2} ax}=-\dfrac{coth ax}{a} +C $
$ \int sh ax sh px dx=\dfrac{sh(a+p) x}{2(a+p)}-\dfrac{sh(a-p)x}{2(a-p)}+C, p=\pm a $
$ \int sh ax sin px dx=\dfrac{a ch ax sin px-p sh ax cos px}{a^{2}+p^{2}} +C $
$ \int sh ax cos px dx=\dfrac{a ch ax cos px+p sh ax sin px}{a^{2}+p^{2}} +C $
$ \int\dfrac{dx}{p+q sh ax}=\dfrac{1}{a\sqrt{p^{2}+q^{2}}}\ln(\dfrac{qe^{ax}+p-\sqrt{p^{2}+q^{2}}}{qe^{ax}+p+\sqrt{p^{2}+q^{2}}}) +C $
$ \int\dfrac{dx}{(p+q sh ax)^{2}}=\dfrac{-q ch ax}{a(p^{2}+q^{2})(p+q sh ax)}+\dfrac{p}{p^{2}+q^{2}} \int\dfrac{dx}{p+q sh ax} $
$ \int\dfrac{dx}{p^{2}+q^{2} sh^{2} ax}=\begin{cases} \dfrac{\dfrac{1}{ap\sqrt{q^{2}-p^{2}}}Arc tg\dfrac{\sqrt{q^{2}-p^{2}} th ax}{p}}{\dfrac{1}{2ap\sqrt{p^{2}-q^{2}}}\ln\biggl(\dfrac{p+\sqrt{p^{2}-q^{2}} th ax}{p-\sqrt{p^{2}-q^{2}} th ax}\biggl)} & .\end{cases}\dfrac{1}{a\sqrt{p^{2}+q^{2}}}\ln\biggl(\dfrac{qe^{ax}+p-\sqrt{p^{2}+q^{2}}}{qe^{ax}+p+\sqrt{p^{2}+q^{2}}}\biggl) +C $
$ \int\dfrac{dx}{p^{2}-q^{2} sh^{2} ax}=\dfrac{1}{2ap\sqrt{p^{2}+q^{2}}}\ln(\dfrac{p+\sqrt{p^{2}+q^{2}} th ax}{p-\sqrt{p^{2}+q^{2}} th ax}) +C $
$ \int x^{m} sh ax dx=\dfrac{x^{m} ch ax}{a}-\dfrac{m}{a}\int x^{m-1}ch ax dx $
$ \int sh^{n} ax dx=\dfrac{sh^{n-1} ax ch ax}{an}-\dfrac{n-1}{n}\int sh^{n-2} ax dx $
$ \int\dfrac{sh ax}{x^{n}} dx=\dfrac{-sh ax}{(n-1)x^{n-1}}+\dfrac{a}{n-1}\int\dfrac{ch ax}{x^{n-1}} dx $
$ \int\dfrac{dx}{sh^{n} ax}=\dfrac{-ch ax}{a(n-1)sh^{n-1} ax}-\dfrac{n-2}{n-1}{\displaystyle \int}\dfrac{dx}{sh^{n-2} ax} $
$ \int\dfrac{x}{sh^{n} ax} dx=\dfrac{-x ch ax}{a(n-1)sh^{n-1} ax}-\dfrac{1}{a^{2}(n-1)(n-2) sh^{n-2} ax}-\dfrac{n-2}{n-1}{\displaystyle \int}\dfrac{dx}{sh^{n-2} ax} $
$ \int\dfrac{1}{sh ax}dx=\dfrac{1}{a}\ln th\dfrac{ax}{2} +C $
$ \int\dfrac{1}{sh^{2} ax}dx=-\dfrac{coth ax}{a} +C $
$ \int\dfrac{1}{sh^{3} ax}dx=\dfrac{coth ax}{2a sh ax}+\dfrac{1}{2a}\ln th\dfrac{ax}{2} +C $
$ \int\dfrac{coth ax}{sh^{n} ax}dx=-\dfrac{1}{na sh^{n} ax} +C $
$ \int sh ax dx=\dfrac{ch ax}{a} +C $
$ \int\dfrac{xdx}{sh ax}=\dfrac{1}{a^{2}}\biggl\{ ax-\dfrac{(ax)^{3}}{18}+\dfrac{7(ax)^{5}}{1800}+\cdots+\dfrac{2(-1)^{n}(2^{2n-1}-1)B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int\dfrac{xdx}{sh^{2} ax}=\dfrac{x coth ax}{a}-\dfrac{1}{a^{2}}\ln sh ax +C $
$ \int\dfrac{dx}{x sh ax}=-\dfrac{1}{ax}-\dfrac{ax}{6}+\dfrac{7(ax)^{3}}{1080}+\cdots\dfrac{(-1)^{n}(2^{2n-1}-1)B_{n}(ax)^{2n-1}}{(2n-1)(2n)|}\biggl\} +C $
$ \int\dfrac{dx}{q+\dfrac{p}{sh ax}}=\dfrac{x}{q}-\dfrac{p}{q} \int\dfrac{dx}{p+q sh ax} $
$ \int\dfrac{1}{sh^{n} ax}dx=\dfrac{coth ax}{a(n-1) sh^{n-2} ax}-\dfrac{(n-2)}{(n-1)} \int\dfrac{dx}{sh^{n-2} ax} $
$ \int sh ax ch ax dx=\dfrac{sh^{2} ax}{2a} +C $
$ \int sh px ch qx dx=\dfrac{ch(p+q)x}{2(p+q)}+\dfrac{ch(p-q)x}{2(p-q)} +C $
$ \int sh^{n} ax ch ax dx=\dfrac{sh^{n+1} ax}{(n+1)a} +C $
$ \int ch^{n} ax sh ax dx=\dfrac{ch^{n+1} ax}{(n+1)a} +C $
$ \int sh^{2} ax ch^{2} ax dx=\dfrac{sh4ax}{32a}-\dfrac{x}{8} +C $
$ \int\dfrac{dx}{sh ax ch ax}=\dfrac{1}{a}\ln th ax +C $
$ \int\dfrac{dx}{sh^{2} ax ch ax}=-\dfrac{1}{a}Arc tg sh ax-\dfrac{1}{a sh ax} +C $
$ \int\dfrac{dx}{sh ax ch^{2} ax}=\dfrac{1}{a ch ax}+\dfrac{1}{a}\ln th\dfrac{ax}{2} +C $
$ \int\dfrac{dx}{sh^{2} ax ch^{2} ax}=-\dfrac{2 coth2ax}{a} +C $
$ \int\dfrac{sh^{2} ax dx}{ch ax}=-\dfrac{1}{a}Arc tg sh ax+\dfrac{sh ax}{a} +C $
$ \int\dfrac{ch^{2} ax dx}{sh ax}=\dfrac{1}{a}\ln th\dfrac{ax}{2}+\dfrac{ch ax}{a} +C $
$ \int\dfrac{dx}{sh ax(ch ax+1)}=\dfrac{1}{2a}\ln th\dfrac{ax}{2}+\dfrac{1}{2a(ch ax+1)} +C $
$ \int\dfrac{dx}{(sh ax+1) ch ax}=\dfrac{1}{2a}\ln\biggl(\dfrac{1+sh ax}{ch ax}\biggl)+\dfrac{1}{a}Arc tg e^{ax} +C $
$ \int\dfrac{dx}{sh ax(ch ax-1)}=-\dfrac{1}{2a}\ln th\dfrac{ax}{2}-\dfrac{1}{2a(ch ax-1)} +C $
Inverse Hyperbolic Sine ( arg sh x)
$ \int\arg sh\dfrac{x}{a}dx=x\arg sh\dfrac{x}{a}-\sqrt{x^{2}+a^{2}} +C $
$ \int x\arg sh\dfrac{x}{a} dx=\biggl(\dfrac{x^{2}}{2}+\dfrac{a^{2}}{4}\biggl)\arg sh\dfrac{x}{a}-\dfrac{x\sqrt{x^{2}+a^{2}}}{4} +C $
$ \int x^{2}\arg sh\dfrac{x}{a} dx=\dfrac{x^{3}}{3}\arg sh\dfrac{x}{a}+\dfrac{(2a^{2-}x^{2})\sqrt{x^{2}+a^{2}}}{9} +C $
$ \int\dfrac{\arg sh\dfrac{x}{a}}{x}dx=\Biggl\{\begin{array}{c} \dfrac{x}{a}-\dfrac{(\dfrac{x}{a})^{3}}{2\cdot3\cdot3}+\dfrac{1\cdot3(\dfrac{x}{a})^{5}}{2\cdot4\cdot5\cdot5}-\dfrac{1\cdot3\cdot5(\dfrac{x}{a})^{7}}{2\cdot4\cdot6\cdot7\cdot7}+\cdots,|x|<a\\ \dfrac{\ln^{2}(\dfrac{2x}{a})}{2}-\dfrac{(\dfrac{a}{x})^{2}}{2\cdot2\cdot2}+\dfrac{1\cdot3(\dfrac{a}{x})^{4}}{2\cdot4\cdot4\cdot4}-\dfrac{1\cdot3\cdot5(\dfrac{a}{x})^{6}}{2\cdot4\cdot6\cdot6\cdot6}+\cdots, x>a\\ \dfrac{\ln^{2}(\dfrac{-2x}{a})}{2}+\dfrac{(\dfrac{a}{x})^{2}}{2\cdot2\cdot2}-\dfrac{1\cdot3(\dfrac{a}{x})^{4}}{2\cdot4\cdot4\cdot4}+\dfrac{1\cdot3\cdot5(\dfrac{a}{x})^{6}}{2\cdot4\cdot6\cdot6\cdot6}+\cdots, x<-a\end{array} +C $
$ \int\dfrac{\arg sh\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg sh\dfrac{x}{a}}{x}-\dfrac{1}{a}\ln\Biggl(\dfrac{a+\sqrt{x^{2}+a^{2}}}{x}\Biggl) +C $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett