(Created page with "Category:Formulas Category:integral <center><font size= 4> '''Collective Table of Formulas''' </font size> '''Table_of_indefinite_...")
 
 
Line 15: Line 15:
 
{|
 
{|
 
|-
 
|-
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | 28 Integrals of coth ax
+
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | coth x
 
|-
 
|-
 
|-
 
|-
Line 39: Line 39:
 
|-
 
|-
 
| <math> \int coth^{n} ax dx=-\dfrac{coth^{n-1} ax}{a(n-1)}+ \int coth^{n-2} ax dx </math>
 
| <math> \int coth^{n} ax dx=-\dfrac{coth^{n-1} ax}{a(n-1)}+ \int coth^{n-2} ax dx </math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Inverse Hyperbolic Cotangent ( arg coth x)
 +
|-
 +
|-
 +
| <math> \int\arg coth\dfrac{x}{a}dx=x\arg coth x+\dfrac{a}{2}\ln(x^{2}-a^{2}) +C</math>
 +
|-
 +
| <math> \int x\arg coth\dfrac{x}{a} dx=\dfrac{ax}{2}+\frac{1}{2}(x^{2}-a^{2})\arg coth\dfrac{x}{a} +C</math>
 +
|-
 +
| <math> \int x^{2}\arg coth\dfrac{x}{a} dx=\dfrac{ax^{2}}{6}+\frac{a^{3}}{6}\ln(x^{2}-a^{2})+\dfrac{x^{3}}{3}\arg coth\dfrac{x}{a} +C</math>
 +
|-
 +
| <math> \int\dfrac{\arg coth\dfrac{x}{a}}{x}dx=-\Biggl(\dfrac{a}{x}+\dfrac{(\dfrac{a}{x})^{3}}{3^{2}}+\dfrac{(\dfrac{a}{x})^{5}}{5^{2}}+\cdots\Biggl) +C</math>
 +
|-
 +
| <math> \int\dfrac{\arg coth\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg coth\dfrac{x}{a}}{x}+\dfrac{1}{2a}\ln\Biggl(\dfrac{x^{2}}{x^{2}-a^{2}}\Biggl) +C</math>
 
|}
 
|}
 
----
 
----

Latest revision as of 16:48, 26 February 2015


Collective Table of Formulas

Indefinite Integrals with hyperbolic cotangent (coth x)

click here for more formulas


coth x
$ \int coth ax dx=\dfrac{\ln sh ax}{a} +C $
$ \int coth^{2} ax dx=x-\dfrac{coth ax}{a} +C $
$ \int coth^{3} ax dx=\dfrac{1}{a}\dfrac{\ln sh ax}{a}-\dfrac{coth^{2} ax}{2a} +C $
$ \int\dfrac{coth^{n} ax}{sh^{2} ax} dx=\dfrac{coth^{n+1} ax}{(n+1)a} +C $
$ \int\dfrac{dx}{coth ax sh^{2} ax} dx=\dfrac{1}{a}\ln coth ax +C $
$ \int\dfrac{dx}{coth ax} dx=\dfrac{1}{a}\ln ch ax +C $
$ \int x coth ax dx=\dfrac{1}{a^{2}}\biggl\{ ax+\dfrac{(ax)^{3}}{9}-\dfrac{(ax)^{5}}{225}+\dfrac{2(ax)^{7}}{105}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n+1}}{(2n+1)|}\biggl\} +C $
$ \int x coth^{2} ax dx=\dfrac{x^{2}}{2}-\dfrac{x coth ax}{a}+\dfrac{1}{a^{2}}\ln sh ax+C $
$ \int\dfrac{coth ax}{x} dx=\biggl\{-\dfrac{1}{ax}+\dfrac{ax}{3}-\dfrac{(ax)^{3}}{135}+\cdots\dfrac{(-1)^{n-1}2^{2n}B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}\biggl\} +C $
$ \int\dfrac{dx}{p+q coth ax}=\dfrac{px}{p^{2}-q^{2}}-\dfrac{q}{a(p^{2}-q^{2})}\ln(p sh ax+q ch ax) +C $
$ \int coth^{n} ax dx=-\dfrac{coth^{n-1} ax}{a(n-1)}+ \int coth^{n-2} ax dx $
Inverse Hyperbolic Cotangent ( arg coth x)
$ \int\arg coth\dfrac{x}{a}dx=x\arg coth x+\dfrac{a}{2}\ln(x^{2}-a^{2}) +C $
$ \int x\arg coth\dfrac{x}{a} dx=\dfrac{ax}{2}+\frac{1}{2}(x^{2}-a^{2})\arg coth\dfrac{x}{a} +C $
$ \int x^{2}\arg coth\dfrac{x}{a} dx=\dfrac{ax^{2}}{6}+\frac{a^{3}}{6}\ln(x^{2}-a^{2})+\dfrac{x^{3}}{3}\arg coth\dfrac{x}{a} +C $
$ \int\dfrac{\arg coth\dfrac{x}{a}}{x}dx=-\Biggl(\dfrac{a}{x}+\dfrac{(\dfrac{a}{x})^{3}}{3^{2}}+\dfrac{(\dfrac{a}{x})^{5}}{5^{2}}+\cdots\Biggl) +C $
$ \int\dfrac{\arg coth\dfrac{x}{a}}{x^{2}}dx=-\dfrac{\arg coth\dfrac{x}{a}}{x}+\dfrac{1}{2a}\ln\Biggl(\dfrac{x^{2}}{x^{2}-a^{2}}\Biggl) +C $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang