Line 36: Line 36:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
([[2D_delta|info]]) 2D sinc dirac delta  
+
2D Dirac delta  
 
| <math>\delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R}</math>
 
| <math>\delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
([[2D_sinc|info]]) 2D sinc function  
+
2D sinc function  
 
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R}</math>
 
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-

Revision as of 17:38, 23 February 2015


Collective Table of Formulas

Basic Signals and Functions

click here for more formulas


Basic Signals and Functions in one variable
Continuous-time signals.
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
Discrete-time signals
DT delta function $ \delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
Basic Signals and Functions in two variables
Continuous-time

2D Dirac delta

$ \delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R} $

2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R} $

(info) 2D rect function

$ rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R} $

Go to Relevant Course Page: ECE 301

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett