Line 66: Line 66:
 
\begin{bmatrix}x \\ y \end{bmatrix})e^{-j2\pi r\rho}dzdr  (1)\\
 
\begin{bmatrix}x \\ y \end{bmatrix})e^{-j2\pi r\rho}dzdr  (1)\\
 
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \\
 
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}
+
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}dxdy
 +
&= F(\rho\cos(0),\rho\sin(0))
 
\end{align}
 
\end{align}
 
</math><br />
 
</math><br />

Revision as of 17:45, 20 December 2014

Link title

Fourier Slice Theorem (FST)

A slecture by ECE student Sahil Sanghani

Partly based on the ECE 637 material of Professor Bouman.

Introduction

The Fourier Slice Theorem elucidates how the projections measured by a medical imaging device can be used to reconstruct the object being scanned. From those projections a Continuous Time Fourier Transform (CTFT) is taken. Then according to the theorem, an inverse Continuous Space Fourier Transform (CSFT) can be used to form the original object,$ f(x,y) $. There are two proofs that will be demonstrated.


Fourier Slice Theorem

Given:

$ (x,y): $= the coordinates of the system the original object resides in (as seen in Figure 1)

$ (r,z): $= the coordinates of the system the projection resides in rotated at an angle $ \theta $ relative to the object's coordinate system (as seen in Figure 2)

$ \rho: $= the frequency variable corresponding to $ r $

$ u: $= the frequency variable corresponding to $ x $

$ v: $= the frequency variable corresponding to $ y $

The Fourier Slice Theorem (FST) states that if
$ \begin{align} P_{\theta}({\rho}) &= CTFT \{p_\theta(r)\} \\ F(u,v) &= CSFT\{f(x,y)\} \end{align} $

Then
$ P_{\theta}({\rho}) = F(\rho\cos(\theta),\rho\sin(\theta)) \ $

This means that $ P_{\theta}({\rho}) $ is $ F(u,v) $ in polar coordinates. Basically


Proof

Method 1

From the derivation of the Radon transform, we have
$ p_{\theta}(r) = \int_{-\infty}^{\infty}f(\mathbf{A_{\theta}} \begin{bmatrix} r \\ z \end{bmatrix}) dz $

$ \begin{align} \Rightarrow P_{\theta}(\rho) &= CTFT \{p_\theta(r)\}\\ &= \int_{-\infty}^{\infty} p_{\theta}(r)e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty} f(\mathbf{A_{\theta}} \begin{bmatrix}r \\ z \end{bmatrix})dz]e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{A_{\theta}} \begin{bmatrix}r \\ z \end{bmatrix})e^{-j2\pi r\rho}dzdr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{A_{\theta}}*\mathbf{A_{-\theta}} \begin{bmatrix}x \\ y \end{bmatrix})e^{-j2\pi r\rho}dzdr (1)\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi r\rho} \left | \frac{\partial (r,z)}{\partial (x,y)} \right \vert dxdy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi (x\rho\cos(\theta) + y\rho\sin(\theta))}dxdy &= F(\rho\cos(0),\rho\sin(0)) \end{align} $


Method 2

Let $ \theta = 0 $. Then notice that when $ \theta = 0 $, the $ x $ and $ r $ axes line up, as do the $ y $ and $ z $ axes. From the derivation of the Radon transform, we get the following definition equation.

$ p_{\theta}(r) = \int_{-\infty}^{\infty} f(r\cos(\theta)-z\sin(\theta),r\sin(\theta)+z\cos(\theta))dz $ $ \begin{align} p_{0}(r) &= \int_{-\infty}^{\infty} f(r\cos(0)-z\sin(0),r\sin(0)+z\cos(0))dz \\ &= \int_{-\infty}^{\infty} f(r,z)dz \\ \end{align} $
Now let's take the CTFT of both sides.
$ \begin{align} P_0(\rho) &= \int_{-\infty}^{\infty} p_0(r)e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty} f(r,z)dz]e^{-j2\pi r\rho}dr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,z)e^{-j2\pi r\rho}e^{-j2\pi z*0}drdz \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(x\rho + y0)}dxdy \\ &= F(\rho,0) \\ &= F(\rho\cos(0),\rho\sin(0)) \end{align} $

Since the FST holds true under $ \theta = 0 $, by the rotation property of the CSFT, the FST must hold true for any $ \theta $.


References:
[1] C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.

Back to Honors Contract Main Page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett