Line 93: Line 93:
  
 
:<font size= 2>Manipulate the given signal</font size>
 
:<font size= 2>Manipulate the given signal</font size>
<center><math>X(z)=\frac{1}{1-2z} = \frac{-1}{2z} \frac{1}{1-\frac{1}{2z}}</math></center>
+
 
 +
<center><math>X(z)=\frac{1}{1-2z} = \frac{1}{2z} \frac{1}{1-(-\frac{1}{2z})}</math></center>
  
 
:<font size=2>Using a infinite Geometric sum we can obtain</font size>
 
:<font size=2>Using a infinite Geometric sum we can obtain</font size>
  
<center><math>X(z) = - \sum_{n=0}^{\infty} (\frac{1}{2z})^{n}\frac{1}{2z} = - \sum_{n=0}^{\infty} z^{-n-1}2^{-n-1} = - \sum_{n=-\infty}^{\infty} z^{-n-1}2^{-n-1} u[n]</math></center>
+
<center><math>X(z) = \sum_{n=0}^{\infty} (\frac{-1}{2z})^{n}\frac{1}{2z} = \sum_{n=0}^{\infty} (-2z)^{-n}(2z)^{-1}= \sum_{n=-\infty}^{\infty} \frac{1}{2}(-2)^{-n}z^{-n-1} u[n]</math></center>
  
<center><math> \text{ let } k=n+1, \text{ then } X(z) = - \sum_{k=-\infty}^{\infty} z^{-k} 2^{} u[k-1] = - \sum_{k=-\infty}^{\infty} u[k-1] z^{-k}</math></center>
+
<center><math> \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty} \frac{1}{2}(-2)^{-k+1}u[k-1] z^[-k]</math></center>
  
 
:<font size= 2> By comparison with the Z Transform definition, we can determine <math> x[n] </math></font size>
 
:<font size= 2> By comparison with the Z Transform definition, we can determine <math> x[n] </math></font size>
  
<center><math>x[n] = -u[n-1]</math></center>
+
<center><math>x[n] = \frac{1}{2}(-2)^{-k+1}u[n-1]</math></center>

Revision as of 15:43, 13 December 2014


Inverse Z Transform

Overview

The purpose of this page is to...
I. Define the Z Transform and Inverse Z Transform
II. Provide Example Problems of the Inverse Z Transform

I. Definitions

Z Transform

$ X(z)=\mathcal{L}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} $

Inverse Z Transform

$ x[n]=\mathcal{L}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz $

II. Example Problems of the Inverse Z Transform

We will find the Inverse Z transform of various signals by manipulation and then using direct Inversion.
On the first example we will go slowly over each step.

Ex. 1 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 $

note: It is important to realize that we are not going to try to use the direct formula for an inverse Z transform, Instead our approach will be to manipulate the signal so that we can directly compare it with the Z transform equation and by inspection obtain the Inverse Z transform.
First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
$ |A| < 1 $
In this case this is already satisfied with
$ A = z $
Then we need to manipulate the given signal to be in the following form, B is just some expression that is the result of adjusting the equation (in this case B = 1)
$ X(z)=B\frac{1}{1-A} $
Using a infinite Geometric sum we can obtain following...
$ X(z) = \sum_{n=0}^{\infty} 1(z^{n}) = \sum_{n=-\infty}^{\infty} z^{n} u[n] $
$ \text{let } k = -n \text{ then, } X(z) = \sum_{k=-\infty}^{\infty} z^{-k} u[-k]= \sum_{k=-\infty}^{\infty}u[-k] z^{-k} $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = u[-n] $

Ex. 2 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 $

First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
$ |A| < 1 $
In this case
$ A = \frac{1}{z} $
Manipulate the given signal
$ X(z)=\frac{1}{1-z} = \frac{1}{z} \frac{1}{1-(-\frac{1}{z})} $
Using a infinite Geometric sum we can obtain
$ X(z) = \sum_{n=0}^{\infty} (\frac{-1}{z})^{n}\frac{1}{z} = \sum_{n=0}^{\infty}(-1)^{n} z^{-n-1} = \sum_{n=-\infty}^{\infty} (-1)^{n} z^{-n-1} u[n] $
$ \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty}(-1)^{k-1} z^{-k} u[k-1] = \sum_{k=-\infty}^{\infty} (-1)^{k-1} u[k-1] z^{-k} $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = (-1)^{n-1} u[n-1] $

Ex. 4 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 $

Manipulate the given signal
$ X(z)=\frac{1}{1-2z} = \frac{1}{2z} \frac{1}{1-(-\frac{1}{2z})} $
Using a infinite Geometric sum we can obtain
$ X(z) = \sum_{n=0}^{\infty} (\frac{-1}{2z})^{n}\frac{1}{2z} = \sum_{n=0}^{\infty} (-2z)^{-n}(2z)^{-1}= \sum_{n=-\infty}^{\infty} \frac{1}{2}(-2)^{-n}z^{-n-1} u[n] $
$ \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty} \frac{1}{2}(-2)^{-k+1}u[k-1] z^[-k] $
By comparison with the Z Transform definition, we can determine $ x[n] $
$ x[n] = \frac{1}{2}(-2)^{-k+1}u[n-1] $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009