Line 68: Line 68:
 
== Solution 2:  ==
 
== Solution 2:  ==
  
a) 
+
a)&nbsp;<math>f_1(\lambda)</math>,&nbsp;<math>f_2(\lambda)</math>&nbsp;and&nbsp;<math>f_3(\lambda)</math>&nbsp;are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum.&nbsp;
  
b)
+
b)  
  
c)
+
c)  
 
+
d)
+
  
 +
d)
  
 +
<br>
  
 
----
 
----
  
=== Related Problem ===
+
=== Related Problem ===
  
 
1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  
 
1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  

Revision as of 17:19, 12 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 2

Problem 1 ,Problem 2

Solution 1:

a) If the color matching functions fk(λ) has negative values, it will result in negative values in Fk. In this case, the color can not be reproduced by this device.

b) The CIE color matching functions are not always positive. r0(λ) takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the R,G, and B primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.

c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

So that, [r,g,b]t = M − 1[F1,F2,F3].

d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.

Solution 2:

a) $ f_1(\lambda) $$ f_2(\lambda) $ and $ f_3(\lambda) $ are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum. 

b)

c)

d)



Related Problem

1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ. Here the color matching allows for color to be subtracted from the reference color. At each wavelength λ, the matching color is given by

$ \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r(\lambda)\\ g(\lambda)\\ b(\lambda) \end{array}} \right] $

where r(λ), g(λ), and b(λ) are normalized to 1.

Further define the white point

$ W = \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r_w\\ g_w\\ b_w \end{array}} \right] $

Let I(λ) be the light reflected from a surface.

a) Calculate (re,ge,be) the tristimulus values for the spectral distribution I(λ) using primaries R,G,B and an equal energy white point.

b) Calculate (rc,gc,bc) the tristimulus values for the spectral distribution I(λ) using primaries R,G,B and white point (rw,gw,bw).


Back to ECE QE page:

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett