Line 84: Line 84:
 
     \right ]</math>&nbsp;have the same&nbsp;<span class="texhtml">''p''<sub>0&nbsp;</sub>and''&nbsp;p''<sub>1</sub>'''<sub>.&nbsp;</sub>'''</span>  
 
     \right ]</math>&nbsp;have the same&nbsp;<span class="texhtml">''p''<sub>0&nbsp;</sub>and''&nbsp;p''<sub>1</sub>'''<sub>.&nbsp;</sub>'''</span>  
  
<span class="texhtml">'''<sub></sub>'''</span>Therefore, ''P''<sub>''0''</sub> and ''P''<sub>''1''</sub> will be the same for ''X<sub>0</sub>'' and ''X<sub>1</sub>''. We will not be able to recover x<sub><span style="font-size: 11px;">''0''</span></sub><span style="font-size: 11px;" />&nbsp;and x<sub><span style="font-size: 11px;">''1''</span></sub><span style="font-size: 11px;" />&nbsp;based on ''P''<sub>''0''</sub> and ''P''<sub>''1''</sub>.&nbsp;  
+
<span class="texhtml">'''<sub></sub>'''</span>Therefore, ''P''<sub>''0''</sub> and ''P''<sub>''1''</sub> will be the same for ''X<sub>0</sub>'' and ''X<sub>1</sub>''. We will not be able to recover x<sub><span style="font-size: 11px;">''0''</span></sub>&lt;span style="font-size: 11px;" /&gt;&nbsp;and x<sub><span style="font-size: 11px;">''1''</span></sub>&lt;span style="font-size: 11px;" /&gt;&nbsp;based on ''P''<sub>''0''</sub> and ''P''<sub>''1''</sub>.&nbsp;  
  
 
<br>  
 
<br>  
Line 98: Line 98:
 
a) Calculate <span class="texhtml">''G''(μ,ν)</span> the CSFT of <span class="texhtml">''g''(''x'',''y'')</span>. <br> b) Calculate <span class="texhtml">''S''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span> the DSFT of <span class="texhtml">''s''(''m'',''n'')</span>. <br>  
 
a) Calculate <span class="texhtml">''G''(μ,ν)</span> the CSFT of <span class="texhtml">''g''(''x'',''y'')</span>. <br> b) Calculate <span class="texhtml">''S''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span> the DSFT of <span class="texhtml">''s''(''m'',''n'')</span>. <br>  
  
2. Assume that we know (or can measure) the function
+
2. Assume that we know (or can measure) the function  
  
<math>p(x) = \int_{-\infty}^{\infty}f(x,y)dy</math>
+
<math>p(x) = \int_{-\infty}^{\infty}f(x,y)dy</math>  
  
Using the definitions of the Fourier transform, derive an expressoin for&nbsp;<math>F(u,0)</math>&nbsp;in terms of the function&nbsp;<math>p(x)</math>.
+
Using the definitions of the Fourier transform, derive an expressoin for&nbsp;<span class="texhtml">''F''(''u'',0)</span>&nbsp;in terms of the function&nbsp;<span class="texhtml">''p''(''x'')</span>.  
  
(Refer to ECE637 2008 Exam1 Problem2)
+
(Refer to ECE637 2008 Exam1 Problem2.)  
  
 
----
 
----

Revision as of 17:00, 12 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 1

Problem 1 ,Problem 2

Solution 1:

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

p0(ej'w) = X(ejμ,ejw) | μ = 0

b) Similarly to a), we have:

p1(ej'w) = X(ejw,ejν) | ν = 0

c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.

d) No, it can't provide sufficient information. From the expression in a) and b), we see that p0(ej'w)and <span class="texhtml" />p1(ejw) are only slices of the DSFT. It lost the information when μ and ν are not zero. A simple example would be: Let
$ x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 ~ 2 \\ 3 ~ 4\\ \end{array}} \right] $, so
$ p_0(n) =[4~6], p_1(m) = [3 ~7]^T $. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, $ x(m,n) = \left[ {\begin{array}{*{20}{c}} 2 ~ 1 \\ 2 ~ 5\\ \end{array}} \right] $ gives the same projection.

Solution 2:

a) From the question, 

$ P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) $

Therefore, 

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0} $

b) Similar to question a), 

$ P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) $

Therefore,

$ P_0(e^{j\mu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0} $

c)

$ \sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0} $

d)No. P0  only represents the μ axis on X(ejμ,ejν). P1 only represents the ν axis on X(ejμ,ejν). It is not enough to represent X(ejμ,ejν).

For example, assume two different array x1 and x2.

$ x_1 = \left [ \begin{array}{cc} 3 & 4 \\ 5 & 6 \end{array} \right ] $ and $ x_2 = \left [ \begin{array}{cc} 4 & 3 \\ 4 & 7 \end{array} \right ] $ have the same pand p1

Therefore, P0 and P1 will be the same for X0 and X1. We will not be able to recover x0<span style="font-size: 11px;" /> and x1<span style="font-size: 11px;" /> based on P0 and P1



Related Problem

1.Let g(x,y) = s'i'n'c(x / 2,y / 2), and let <span class="texhtml" />s(m,n) = g('T,n'T) where T = 1.

a) Calculate G(μ,ν) the CSFT of g(x,y).
b) Calculate S(ejμ,ejν) the DSFT of s(m,n).

2. Assume that we know (or can measure) the function

$ p(x) = \int_{-\infty}^{\infty}f(x,y)dy $

Using the definitions of the Fourier transform, derive an expressoin for F(u,0) in terms of the function p(x).

(Refer to ECE637 2008 Exam1 Problem2.)


Back to ECE QE page:

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach