Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
[[Category:CNSIP]]
+
[[Category:problem solving]]
+
[[Category:image processing]]
+
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) =  
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS) =
= [[ECE-QE_CS5-2013|Question 5, August 2013]], Problem 1 =
+
 
 +
= [[ECE-QE CS5-2013|Question 5, August 2013]], Problem 1 =
 +
 
 +
:[[QE637_2013_Pro1|Problem 1 ]],[[QE637 2013 Pro2|Problem 2 ]]
  
:[[ QE637 2013 Pro1 | Problem 1 ]],[[ QE637 2013 Pro2 | Problem 2 ]]
 
 
----
 
----
== Solution 1: ==
+
 
 +
== Solution 1: ==
 +
 
 
a) Since  
 
a) Since  
  
Line 23: Line 23:
 
we have:  
 
we have:  
  
<math> p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0} </math>
+
<span class="texhtml">''p''<sub>0</sub>(''e''<sup>''j''''w'''''</sup>''''') = '''''<b>X''(''e''<sup></sup>''j''μ,''e''<sup></sup>''j</b>'''''w'') | <sub>μ = 0</sub>'''</span>  
  
 
b) Similarly to a), we have:  
 
b) Similarly to a), we have:  
  
<math> p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0}</math>
+
<span class="texhtml">''p''<sub>1</sub>(''e''<sup>''j''''w'''''</sup>''''') = '''''<b>X''(''e''<sup></sup>''j</b>'''''w'',''e''<sup>''j''ν</sup>) | <sub>ν = 0</sub>'''</span>  
  
c) <br>
+
c) <br> <math> \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} </math> which is the DC point of the image.  
<math> \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} </math>
+
which is the DC point of the image.
+
  
d) No, it can't provide sufficient information.  
+
d) No, it can't provide sufficient information. From the expression in a) and b), we see that <span class="texhtml">''p''<sub>0</sub>(''e''<sup>''j''''w'''''</sup>''''')'''''</span>'''''and &lt;span class="texhtml" /&gt;'''''<b>p''<sub>1</sub>(''e''<sup></sup>''j</b>'''''w'') are only slices of the DSFT. It lost the information when <span class="texhtml">μ</span> and <span class="texhtml">ν</span> are not zero. A simple example would be: Let <br> <math>
From the expression in a) and b), we see that <math> p_0(e^{jw}) </math> and <math> p_1(e^{jw}) </math> are only slices of the DSFT. It lost the information when <math> \mu </math> and <math> \nu </math> are not zero.  
+
A simple example would be:  
+
Let <br>
+
<math>
+
 
x(m,n) =  
 
x(m,n) =  
 
\left[ {\begin{array}{*{20}{c}}
 
\left[ {\begin{array}{*{20}{c}}
 
1 ~ 2 \\
 
1 ~ 2 \\
 
3 ~ 4\\
 
3 ~ 4\\
\end{array}} \right] </math>,  
+
\end{array}} \right] </math>, so<br> <math> p_0(n) =[4~6], p_1(m) =  [3 ~7]^T </math>. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, <math>
so<br>
+
<math> p_0(n) =[4~6], p_1(m) =  [3 ~7]^T </math>.  
+
With the above the information of the projection, the original form of the 2D signal cannot be determined. For example,  
+
<math>
+
 
x(m,n) =  
 
x(m,n) =  
 
\left[ {\begin{array}{*{20}{c}}
 
\left[ {\begin{array}{*{20}{c}}
 
2 ~ 1 \\
 
2 ~ 1 \\
 
2 ~ 5\\
 
2 ~ 5\\
\end{array}} \right] </math> gives the same projection.
+
\end{array}} \right] </math> gives the same projection. '''
  
== Solution 2: ==
+
== Solution 2: ==
 +
 
 +
a) From the question,&nbsp;
 +
 
 +
<math>P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1
 +
= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0}</math>
 +
 
 +
<br> b) Similar to question a),&nbsp;
 +
 
 +
<math>P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1
 +
= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0}</math>
 +
 
 +
c)
 +
 
 +
<math>\sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n)
 +
=\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0}</math>
 +
 
 +
d)No. ''P''<sub>''0 &nbsp;''</sub>''only&nbsp;''represents the&nbsp;<span class="texhtml">μ</span>&nbsp;axis on <span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>. ''P<sub>1</sub>''&nbsp;only represents the <span class="texhtml">ν</span>&nbsp;axis on <span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>. It is not enough to represent&nbsp;<span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>.
  
 
----
 
----
===Related Problem===
 
1.Let <math> g(x,y) = sinc(x/2, y/2) </math>, and let <math> s(m,n) = g(mT, nT) </math> where T = 1.<br>
 
  
a) Calculate <math> G(\mu, \nu) </math> the CSFT of <math>g(x,y) </math>. <br>
+
=== Related Problem  ===
b) Calculate <math> S(e^{j\mu}, e^{j\nu}) </math> the DSFT of <math> s(m,n) </math>. <br>
+
 
 +
1.Let <span class="texhtml">''g''(''x'',''y'') = ''s''''i''''n''''c'''''<b>(</b>'''''x'' / 2,''y'' / 2)'''</span>''''', and let &lt;span class="texhtml" /&gt;''s''(''m'',''n'') = ''g''(''''''<i>T</i>,''n''''T'''''<b>) where T = 1.<br> </b>
 +
 
 +
a) Calculate <span class="texhtml">''G''(μ,ν)</span> the CSFT of <span class="texhtml">''g''(''x'',''y'')</span>. <br> b) Calculate <span class="texhtml">''S''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span> the DSFT of <span class="texhtml">''s''(''m'',''n'')</span>. <br>  
  
 
----
 
----
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:
+
 
 +
[[ECE PhD Qualifying Exams|Back to ECE QE page]]:  
 +
 
 +
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]

Revision as of 15:58, 12 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 1

Problem 1 ,Problem 2

Solution 1:

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

p0(ej'w) = X(ejμ,ejw) | μ = 0

b) Similarly to a), we have:

p1(ej'w) = X(ejw,ejν) | ν = 0

c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.

d) No, it can't provide sufficient information. From the expression in a) and b), we see that p0(ej'w)and <span class="texhtml" />p1(ejw) are only slices of the DSFT. It lost the information when μ and ν are not zero. A simple example would be: Let
$ x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 ~ 2 \\ 3 ~ 4\\ \end{array}} \right] $, so
$ p_0(n) =[4~6], p_1(m) = [3 ~7]^T $. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, $ x(m,n) = \left[ {\begin{array}{*{20}{c}} 2 ~ 1 \\ 2 ~ 5\\ \end{array}} \right] $ gives the same projection.

Solution 2:

a) From the question, 

$ P_0(e^{j\mu}) = \sum_{n=-\infty}^{\infty}p_0(n)e^{-jn\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\mu}e^{-jm\cdot0} = X(e^{j\mu},e^{j\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\nu = 0} $


b) Similar to question a), 

$ P_1(e^{j\nu}) = \sum_{m=-\infty}^{\infty}p_1(m)e^{-jm\mu} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jm\nu}\cdot1 = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty}x(m,n) e^{-jn\cdot0}e^{-jm\nu} = X(e^{j\cdot0},e^{j\nu}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0} $

c)

$ \sum_{n = -\infty}^{\infty}p_0(n) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) =\sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} x(m,n) e^{-jn\cdot0}e^{-jm\cdot0} = X(e^{-jn\cdot0},e^{-jm\cdot0}) = X(e^{j\mu},e^{j\nu})\vert_{\mu = 0, \nu = 0} $

d)No. P0  only represents the μ axis on X(ejμ,ejν). P1 only represents the ν axis on X(ejμ,ejν). It is not enough to represent X(ejμ,ejν).


Related Problem

1.Let g(x,y) = s'i'n'c(x / 2,y / 2), and let <span class="texhtml" />s(m,n) = g('T,n'T) where T = 1.

a) Calculate G(μ,ν) the CSFT of g(x,y).
b) Calculate S(ejμ,ejν) the DSFT of s(m,n).


Back to ECE QE page:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett