Line 11: Line 11:
 
we have:  
 
we have:  
  
<math> p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0}
+
<math> p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0} </math>
  
 
b) Similarly to a), we have:  
 
b) Similarly to a), we have:  
  
<math> p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0}
+
<math> p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0} </math>
 +
 
 +
c) <math> \sum_{m=-\infty}^{\infty}

Revision as of 20:30, 10 November 2014

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

$ p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0} $

b) Similarly to a), we have:

$ p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0} $

c) $ \sum_{m=-\infty}^{\infty} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal