Line 34: | Line 34: | ||
\end{array}} \right] | \end{array}} \right] | ||
I(\lambda)d\lambda | I(\lambda)d\lambda | ||
+ | |||
+ | = {\begin{array}{*{20}{c}} | ||
+ | \int_{-\infty}^{\infty} | ||
+ | \end{array}} | ||
+ | M | ||
+ | \left[ {\begin{array}{*{20}{c}} | ||
+ | r_0(\lambda)\\ | ||
+ | g_0(\lambda)\\ | ||
+ | b_0(\lambda) | ||
+ | \end{array}} \right] | ||
+ | I(\lambda)d\lambda | ||
+ | |||
+ | = M | ||
+ | {\begin{array}{*{20}{c}} | ||
+ | \int_{-\infty}^{\infty} | ||
+ | \end{array}} | ||
+ | \left[ {\begin{array}{*{20}{c}} | ||
+ | r_0(\lambda)\\ | ||
+ | g_0(\lambda)\\ | ||
+ | b_0(\lambda) | ||
+ | \end{array}} \right] | ||
+ | I(\lambda)d\lambda | ||
+ | |||
+ | = M | ||
+ | \left[ {\begin{array}{*{20}{c}} | ||
+ | r\\ | ||
+ | g\\ | ||
+ | b | ||
+ | \end{array}} \right] | ||
+ | |||
</math> | </math> |
Revision as of 20:00, 10 November 2014
ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)
Question 5, August 2013, Part 2
part1, part 2
Solution 1:
a) If the color matching functions $ f_k(\lambda) $ has negative values, it will result in negative values in $ F_k $. In this case, the color can not be reproduced by this device.
b) The CIE color matching functions are not always positive. $ r_0(\lambda) $ takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the $ R, G, $ and $ B $ primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.
c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $