Line 35: Line 35:
 
Furthermore, assume there exists a matrix,&nbsp;<span class="texhtml">''M''</span>, so that  
 
Furthermore, assume there exists a matrix,&nbsp;<span class="texhtml">''M''</span>, so that  
  
<br>  
+
<math>
 
+
\left[ {\begin{array}{*{20}{c}}
 +
f_1(\lambda)\\
 +
f_1(\lambda)\\
 +
f_1(\lambda)
 +
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
 +
M
 +
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
</math>
 
a) Why is it necessary that&nbsp;<math>f_k(\lambda) \geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2</span>?&lt;span style="line-height: 1.5em;" /&gt;  
 
a) Why is it necessary that&nbsp;<math>f_k(\lambda) \geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2</span>?&lt;span style="line-height: 1.5em;" /&gt;  
  

Revision as of 18:31, 10 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2013



Question

Problem 1. (50 pts)


Problem 2. (50 pts)

Let r0(λ),  g0(λ) , and b0(λ) be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let [r,g,b] be the corresponding CIE tristimulus values. 

Furthermore, let f1(λ)f2(λ), and f3(λ) be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by F = [F1,F2,F3]t, where

$ F_1 = \int_{-\infty}^{\infty}f_1(\lambda)I(\lambda)d\lambda $,

$ F_2 = \int_{-\infty}^{\infty}f_2(\lambda)I(\lambda)d\lambda $,

$ F_3 = \int_{-\infty}^{\infty}f_3(\lambda)I(\lambda)d\lambda $

where I(λ) is the energy spectrum of the incoming light and $ f_k(\lambda)\geq 0 $ for k = 0,1,2..

Furthermore, assume there exists a matrix, M, so that

$ \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} M \end{array}} \right]\left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] $ a) Why is it necessary that $ f_k(\lambda) \geq 0 $ for k = 0,1,2?<span style="line-height: 1.5em;" />

b) Are the functions, $ r_0(\lambda) \geq 0 $, $ g_0(\lambda) \geq 0 $, and $ b_0(\lambda) \geq 0 $? If so, why? If not, why not?

c) Derive an formula for the tristimulus vector $ [r, g, b]^t $ in terms of the tristimulus vector $ F=[F_1, F_2, F_3]^t $.

d) Do functions $ f_k(\lambda) $ exist, which meet these requirements? If so, give a specific example of such functions.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett