Line 32: Line 32:
 
=Solution 1=
 
=Solution 1=
  
<math>Var(X)=E(X^2)-E(X)^2</math>
+
<math>E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z)</math>
  
First,
+
Where
  
<math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math>
+
<math>Y \sim N(\frac{n-1}{n}\sigma, \sigma^2)</math>
  
Since
+
<math>Z \sim EXP(\sigma)</math>
  
<math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\
+
From the property of Normal distribution and exponential distribution,
=\int -x^2 de^{-\lambda x}\\
+
=-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\
+
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\
+
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}
+
\end{array}</math>,
+
  
We have
+
<math>E(Y)=\frac{n-1}{n}\sigma</math>
  
<math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math>
+
<math>E(Z)=\frac{1}{\sigma}</math>.
  
By L'Hospital's rule, we have
+
Therefore,
  
<math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math>
+
<math>\lim_{x\to \infty}E(X_n)=\lim_{x\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma</math>.
  
and
+
Also,
  
<math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>.
+
<math>\lim_{x\to \infty}E(X_{n+m})=\lim_{x\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma</math>.
  
Therefore,
+
Thus,
  
<math>E(X) = \frac{2}{\lambda^2}</math>.
+
<math>\lim_{x\to \infty}E(X_n-X_{n+m})=\lim_{x\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0</math>,
  
Then we take a look at <math>E(X)</math>.  
+
<math>\lim_{x\to \infty}E(X_{n+m}-X_n)=\lim_{x\to \infty}E(X_{n+m})-\lim_{x\to \infty}E(X_n)=0</math>.
  
<math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math>
+
So we have
  
<math>\begin{array}{l}
+
<math>\lim_{x\to \infty}E(|X_{n+m}-X_n|)=0</math>
\int x\lambda{e}^{-\lambda{x}}dx\\
+
=\int xde^(\lambda x)\\
+
=-xe^{-\lambda x}+\int e^{\lambda x}dx\\
+
=-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\
+
\end{array}</math>
+
  
Similar to the calculation of <math>E(X^2)</math>,
+
for every m.
 
+
<math>E(X)=\frac{1}{\lambda}</math>.
+
 
+
Therefore,
+
  
<math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>.
+
From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense
  
 
----
 
----

Revision as of 12:50, 4 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 4

Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf

$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.

Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.


Solution 1

$ E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z) $

Where

$ Y \sim N(\frac{n-1}{n}\sigma, \sigma^2) $

$ Z \sim EXP(\sigma) $

From the property of Normal distribution and exponential distribution,

$ E(Y)=\frac{n-1}{n}\sigma $

$ E(Z)=\frac{1}{\sigma} $.

Therefore,

$ \lim_{x\to \infty}E(X_n)=\lim_{x\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma $.

Also,

$ \lim_{x\to \infty}E(X_{n+m})=\lim_{x\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma $.

Thus,

$ \lim_{x\to \infty}E(X_n-X_{n+m})=\lim_{x\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0 $,

$ \lim_{x\to \infty}E(X_{n+m}-X_n)=\lim_{x\to \infty}E(X_{n+m})-\lim_{x\to \infty}E(X_n)=0 $.

So we have

$ \lim_{x\to \infty}E(|X_{n+m}-X_n|)=0 $

for every m.

From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal