m
 
Line 83: Line 83:
 
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
 
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
&=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
+
&=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
 
&=\frac{1}{x}
 
&=\frac{1}{x}
 
\end{align}</math>
 
\end{align}</math>
Line 90: Line 90:
 
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
 
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
&=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
+
&=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
 
&=\frac{2}{x^2}
 
&=\frac{2}{x^2}
 
\end{align}</math>
 
\end{align}</math>

Latest revision as of 20:02, 5 August 2018


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 3

Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.


Solution 1

$ Var(X)=E(X^2)-E(X)^2 $

First,

$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $

Since

$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,

We have

$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $

By L'Hospital's rule, we have

$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $

and

$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.

Therefore,

$ E(X) = \frac{2}{\lambda^2} $.

Then we take a look at $ E(X) $.

$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $

$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $

Similar to the calculation of $ E(X^2) $,

$ E(X)=\frac{1}{\lambda} $.

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett