Line 98: Line 98:
  
 
==Sound File==
 
==Sound File==
[[Media:HailPurdueRemix_ECE301Fall2008mboutin.wav]]
+
[[HailPurdueRemix_ECE301Fall2008mboutin.wav]]
  
 
==Comments==
 
==Comments==
 
I'm not sure I got the the lengths of the different notes exactly right, but it' pretty close. The transformation y(t) = x(2t) doubles the frequency, which effectively bumps the tune up an octave. This result is demonstrated in the sound file above.
 
I'm not sure I got the the lengths of the different notes exactly right, but it' pretty close. The transformation y(t) = x(2t) doubles the frequency, which effectively bumps the tune up an octave. This result is demonstrated in the sound file above.

Revision as of 19:16, 3 September 2008

MATLAB Code

%Jacob Pfister
%HW1.1

clear
clc

delta = 1/44100;
sec = 1/delta;
i = 1;

%a) Hail, Hail to old Purdue
for t = 0:delta:0.5
    y(i) = sin(2*pi*264*t);
    i = i + 1;
end
for t = (0.5 + delta):delta:0.75
    y(i) = sin(2*pi*297*t);
    i = i + 1;
end
for t = (0.75 + delta):delta:1
    y(i) = sin(2*pi*330*t);
    i = i + 1;
end
for t = (1 + delta):delta:1.5
    y(i) = sin(2*pi*352*t);
    i = i + 1;
end
for t = (1.5 + delta):delta:1.625
    y(i) = sin(2*pi*396*t);
    i = i + 1;
end
for t = (1.625 + delta):delta:1.75
    y(i) = sin(2*pi*440*t);
    i = i + 1;
end

%b) 2 Times faster

for t = (1.75 + delta):delta:2
    y(i) = sin(2*pi*264*t);
    i = i + 1;
end
for t = (2 + delta):delta:2.125
    y(i) = sin(2*pi*297*t);
    i = i + 1;
end
for t = (2.125 + delta):delta:2.5
    y(i) = sin(2*pi*330*t);
    i = i + 1;
end
for t = (2.5 + delta):delta:3
    y(i) = sin(2*pi*352*t);
    i = i + 1;
end
for t = (3 + delta):delta:3.0625
    y(i) = sin(2*pi*396*t);
    i = i + 1;
end
for t = (3.0625 + delta):delta:3.125
    y(i) = sin(2*pi*440*t);
    i = i + 1;
end

%c) y(t) = x(2t)
for t = 3.125:delta:3.625
    y(i) = sin(4*pi*264*t);
    i = i + 1;
end
for t = (3.625 + delta):delta:3.875
    y(i) = sin(4*pi*297*t);
    i = i + 1;
end
for t = (3.875 + delta):delta:4.125
    y(i) = sin(4*pi*330*t);
    i = i + 1;
end
for t = (4.125 + delta):delta:4.625
    y(i) = sin(4*pi*352*t);
    i = i + 1;
end
for t = (4.625 + delta):delta:4.75
    y(i) = sin(4*pi*396*t);
    i = i + 1;
end
for t = (4.75 + delta):delta:4.875
    y(i) = sin(4*pi*440*t);
    i = i + 1;
end

%play
sound(y,44100);

%write file
wavwrite(y,44100,32,'HailPurdueRemix.wav');

Sound File

HailPurdueRemix_ECE301Fall2008mboutin.wav

Comments

I'm not sure I got the the lengths of the different notes exactly right, but it' pretty close. The transformation y(t) = x(2t) doubles the frequency, which effectively bumps the tune up an octave. This result is demonstrated in the sound file above.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang