Line 20: | Line 20: | ||
Image1<br><br> | Image1<br><br> | ||
Now let's describe this process in the frequency domain. | Now let's describe this process in the frequency domain. | ||
− | + | ---- | |
==Derivation== | ==Derivation== | ||
First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.<br> | First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.<br> | ||
Line 37: | Line 37: | ||
<math>\begin{align} | <math>\begin{align} | ||
\mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty s_d[m]x_1[m]e^{-j\omega \frac{m}{D}} \text{ where}\\ | \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty s_d[m]x_1[m]e^{-j\omega \frac{m}{D}} \text{ where}\\ | ||
− | &s_d[m] = \frac{1}{D}\sum_{k=0}^{D-1} e^{jk2\pi \frac{m}{D}} | + | &s_d[m] = \left\{ |
+ | \begin{array}{ll} | ||
+ | 1, & \text{for }m\text{ multiples of } D\\ | ||
+ | 0, & \text{else} | ||
+ | \end{array} | ||
+ | \right.\\ | ||
+ | &\text{ or }=\frac{1}{D}\sum_{k=0}^{D-1} e^{jk2\pi \frac{m}{D}} \text{ so:}\\ | ||
+ | \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty \frac{1}{D}\sum_{k=0}^{D-1} x_1[m]e^{jk2\pi \frac{m}{D}}e^{-j\omega \frac{m}{D}}\\ | ||
+ | &= \frac{1}{D}\sum_{k=0}^{D-1}\sum_{m=-\infty}^\infty x_1[m]e^{-jm\frac{\omega -k2\pi}{D}} \\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
+ | <br>Comparing to<br> | ||
+ | <math>\begin{align} | ||
+ | \mathcal{X}(\omega) &= \sum_{n=-\infty}^\infty x[n]e^{-jn\omega}\\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | <br> We can rewrite the previous as<br> | ||
+ | <math>\begin{align} | ||
+ | \mathcal{X}_2(\omega) &= \frac{1}{D}\sum_{k=0}^{D-1} \mathcal{X}(\frac{\omega -2\pi k}{D}) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | <math>\text{Comared to } \mathcal{X}_1(\omega) \text{, } \mathcal{X}_2(\omega) \text{ is } \frac{1}{D} \text{times the magnitude, has its frequencies stretched by }D \text{ and also repeats every }2\pi \text{ (as every DTFT should)}</math> | ||
+ | ---- | ||
==Example== | ==Example== | ||
+ | Image2<br><br> | ||
+ | It is worth noting that for large enough <math>D</math> it is possible for the ends of repetitions to overlap, leading to aliasing! To prevent this:<br> | ||
+ | |||
+ | <math>\begin{align} | ||
+ | D2\pi T_1 f_{max} < \pi\\ | ||
+ | \\ | ||
+ | x_1[Dn] \text{ has a sampling period of } T_2 = DT_1\text{, so:}\\ | ||
+ | \\ | ||
+ | \begin{align} | ||
+ | \frac{T_2}{T_1}2\pi T_1f_{max} < \pi\\ | ||
+ | f_{max} < \frac{1}{2T_2} | ||
+ | \end{align} | ||
+ | \end{align}</math> | ||
+ | |||
+ | To make sure this condition is satisfied, we can first pass the original <math>x_1[n]</math> signal through a low-pass filter with <math>f_c = 1/(2T_2)</math> BEFORE downsampling.<br><br> | ||
+ | Since the possible aliasing is caused by the downsampling, trying to low-pass filter after the downsampling will be too late and won't be able to get rid of the aliasing. Thus, the full process of downsampling should look like this:<br> | ||
+ | ---- | ||
==Conclusion== | ==Conclusion== | ||
---- | ---- |
Revision as of 15:00, 9 October 2014
Downsampling in the Frequency Domain
A slecture by ECE student John S.
Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.
Contents
Introduction
Remember for time domain, Downsampling is defined as:
Image1
Now let's describe this process in the frequency domain.
Derivation
First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.
$ \begin{align} \mathcal{X}_2(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\ &= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j\omega n} \end{align} $
make the substitution of $ n=\frac{m}{D} $
$ \begin{align} \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty x_1[m]e^{-j\omega \frac{m}{D}} \end{align} $
Downsampled signal will only be nonzero for m equal to multiples of D so:
$ \begin{align} \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty s_d[m]x_1[m]e^{-j\omega \frac{m}{D}} \text{ where}\\ &s_d[m] = \left\{ \begin{array}{ll} 1, & \text{for }m\text{ multiples of } D\\ 0, & \text{else} \end{array} \right.\\ &\text{ or }=\frac{1}{D}\sum_{k=0}^{D-1} e^{jk2\pi \frac{m}{D}} \text{ so:}\\ \mathcal{X}_2(\omega) &= \sum_{m=-\infty}^\infty \frac{1}{D}\sum_{k=0}^{D-1} x_1[m]e^{jk2\pi \frac{m}{D}}e^{-j\omega \frac{m}{D}}\\ &= \frac{1}{D}\sum_{k=0}^{D-1}\sum_{m=-\infty}^\infty x_1[m]e^{-jm\frac{\omega -k2\pi}{D}} \\ \end{align} $
Comparing to
$ \begin{align} \mathcal{X}(\omega) &= \sum_{n=-\infty}^\infty x[n]e^{-jn\omega}\\ \end{align} $
We can rewrite the previous as
$ \begin{align} \mathcal{X}_2(\omega) &= \frac{1}{D}\sum_{k=0}^{D-1} \mathcal{X}(\frac{\omega -2\pi k}{D}) \\ \end{align} $
$ \text{Comared to } \mathcal{X}_1(\omega) \text{, } \mathcal{X}_2(\omega) \text{ is } \frac{1}{D} \text{times the magnitude, has its frequencies stretched by }D \text{ and also repeats every }2\pi \text{ (as every DTFT should)} $
Example
Image2
It is worth noting that for large enough $ D $ it is possible for the ends of repetitions to overlap, leading to aliasing! To prevent this:
$ \begin{align} D2\pi T_1 f_{max} < \pi\\ \\ x_1[Dn] \text{ has a sampling period of } T_2 = DT_1\text{, so:}\\ \\ \begin{align} \frac{T_2}{T_1}2\pi T_1f_{max} < \pi\\ f_{max} < \frac{1}{2T_2} \end{align} \end{align} $
To make sure this condition is satisfied, we can first pass the original $ x_1[n] $ signal through a low-pass filter with $ f_c = 1/(2T_2) $ BEFORE downsampling.
Since the possible aliasing is caused by the downsampling, trying to low-pass filter after the downsampling will be too late and won't be able to get rid of the aliasing. Thus, the full process of downsampling should look like this: