(Removing all content from page)
Line 1: Line 1:
[[Category:slecture]]
 
[[Category:ECE438Fall2014Boutin]]
 
[[Category:ECE]]
 
[[Category:ECE438]]
 
[[Category:signal processing]] 
 
  
<center><font size= 4>
 
Frequency domain view of the relationship between a signal and a sampling of that signal
 
</font size>
 
 
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Yerkebulan Yeshmukhanbetov
 
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].
 
</center>
 
 
----
 
<font size = 3>
 
==Outline==
 
#Introduction
 
#Derivation
 
#Example
 
#Conclusion
 
 
----
 
 
==Introduction==
 
 
This slecture covers definition of downsampling and demonstrates how to obtain downsampled signal in frequency domain.
 
----
 
 
==Derivation==
 
 
signal: <math> x_s(t) </math> and <math> x_d[n] </math>. <math> x_s(t) </math>  <math> P_T(t) </math> with the original signal <math> x(t) </math> and actually <math> x_s(t) </math>  is  <math> comb_T(x(t)) </math> where T is the sampling period.
 
However the <math> x_d[n] </math> is <math> x(nT) </math> where T is the sampling period.
 
 
relationship between <math> X(f) </math> and <math> X_s(f) </math>.
 
 
We know that <math> x_s(t) = x(t) \times P_T(t) </math>, we can derive the relationship between <math> x_s(t) </math> and <math> x(t) </math> in the following way:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
F(comb_T(x(t)) &= F(x(t) \times P_T(t))\\
 
&= X(f)*F(P_T(t))\\
 
&= X(f)*\frac{1}{T}\sum_{n = -\infty}^\infty \delta(f-\frac{n}{T})\\
 
&= \frac{1}{T}X(f)*P_\frac{1}{T}(f)\\
 
&= \frac{1}{T}rep_\frac{1}{T}X(f)\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
Show this relationship in graph below:
 
 
----
 
 
==example==
 
 
[[Image:Xfcbt.png]]
 
 
[[Image:xsfcbt.png]]
 
 
----
 
 
==Derivation==
 
 
n <math> X_s(f) </math> and <math> X_d(\omega) </math>
 
 
We know another way to express CTFT of <math> x_s(t) </math>:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_s(f) &= F(\sum_{n = -\infty}^\infty x(nT)\delta(t-nT))\\
 
&= \sum_{n = -\infty}^\infty x(nT)F(\delta(t-nT))\\
 
&= \sum_{n = -\infty}^\infty x(nT)e^{-j2\pi fnT}\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
compare it with DTFT of <math> x_d[n] </math>:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(\omega) &= \sum_{n = -\infty}^\infty x_d[n]e^{-j\omega n}\\
 
&= \sum_{n = -\infty}^\infty x(nT)e^{-j\omega n}\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
we can find that:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(2\pi Tf) &= X_s(f)\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
if <math> f = \frac{1}{T} </math>
 
 
we have that:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(2\pi ) &= X_s(\frac{1}{T})\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
ationship between <math> X_s(f) </math> and <math> X_d(\omega) </math> and the  is showed in graph as below:
 
 
----
 
 
==example==
 
 
[[Image:xsfcbt.png]]
 
 
[[Image:xdwcbt.png]]
 
 
----
 
 
==conclusion==
 
 
So the relationship between <math> X(f) </math> and <math> X_s(f) </math> is that <math> X_s(f) </math> is a a rep of <math> X(f) </math> in frequency domain with period of <math> \frac{1}{T} </math> and magnitude scaled by <math> \frac{1}{T} </math>.
 
the relationship between <math> X(f) </math> and <math> X_d(\omega) </math> is that <math> X_d(\omega) </math> is also a a rep of <math> X(f) </math> in frequency domain with period <math> 2\pi </math> and magnitude is also scaled by <math> \frac{1}{T} </math>, but the frequency is scaled by <math> 2\pi T </math>
 
----
 

Revision as of 10:21, 9 October 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett