(New page: Category:slecture Category:ECE438Fall2014Boutin Category:ECE Category:ECE438 Category:signal processing <center><font size= 4> Frequency domain view of the relation...)
 
Line 9: Line 9:
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Botao Chen
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Talha Takleh Omar Takleh
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
Line 18: Line 18:
 
==Outline==
 
==Outline==
 
#Introduction
 
#Introduction
#Derivation
+
#Main Points
#Example
+
 
#Conclusion
 
#Conclusion
  
----
 
 
==Introduction==
 
 
In this slecture I will discuss about the relations between the original signal <math> X(f) </math> (the CTFT of <math> x(t) </math>  ), sampling continuous time signal <math> X_s(f) </math> (the CTFT of <math> x_s(t) </math> ) and sampling discrete time signal <math> X_d(\omega) </math> (the DTFT of <math> x_d[n] </math> )  in frequency domain and give a specific example showing the relations.
 
----
 
 
==Derivation==
 
 
The first thing which need to be clarified is that there two different types of sampling signal: <math> x_s(t) </math> and <math> x_d[n] </math>. <math> x_s(t) </math>  is created by multiplying a impulse train <math> P_T(t) </math> with the original signal <math> x(t) </math> and actually <math> x_s(t) </math>  is  <math> comb_T(x(t)) </math> where T is the sampling period.
 
However the <math> x_d[n] </math> is <math> x(nT) </math> where T is the sampling period.
 
 
Now we first concentrate on the relationship between <math> X(f) </math> and <math> X_s(f) </math>.
 
 
We know that <math> x_s(t) = x(t) \times P_T(t) </math>, we can derive the relationship between <math> x_s(t) </math> and <math> x(t) </math> in the following way:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
F(comb_T(x(t)) &= F(x(t) \times P_T(t))\\
 
&= X(f)*F(P_T(t))\\
 
&= X(f)*\frac{1}{T}\sum_{n = -\infty}^\infty \delta(f-\frac{n}{T})\\
 
&= \frac{1}{T}X(f)*P_\frac{1}{T}(f)\\
 
&= \frac{1}{T}rep_\frac{1}{T}X(f)\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
Show this relationship in graph below:
 
 
----
 
 
==example==
 
 
[[Image:Xfcbt.png]]
 
 
[[Image:xsfcbt.png]]
 
 
----
 
 
==Derivation==
 
 
Then we are going to find the relation between <math> X_s(f) </math> and <math> X_d(\omega) </math>
 
 
We know another way to express CTFT of <math> x_s(t) </math>:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_s(f) &= F(\sum_{n = -\infty}^\infty x(nT)\delta(t-nT))\\
 
&= \sum_{n = -\infty}^\infty x(nT)F(\delta(t-nT))\\
 
&= \sum_{n = -\infty}^\infty x(nT)e^{-j2\pi fnT}\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
compare it with DTFT of <math> x_d[n] </math>:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(\omega) &= \sum_{n = -\infty}^\infty x_d[n]e^{-j\omega n}\\
 
&= \sum_{n = -\infty}^\infty x(nT)e^{-j\omega n}\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
we can find that:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(2\pi Tf) &= X_s(f)\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
if <math> f = \frac{1}{T} </math>
 
 
we have that:
 
 
<div style="margin-left: 3em;">
 
<math>
 
\begin{align}
 
X_d(2\pi ) &= X_s(\frac{1}{T})\\
 
\end{align}
 
</math>
 
</div>
 
<font size>
 
 
from this equation, we can know the relationship between <math> X_s(f) </math> and <math> X_d(\omega) </math> and the relationship is showed in graph as below:
 
 
----
 
 
==example==
 
 
[[Image:xsfcbt.png]]
 
 
[[Image:xdwcbt.png]]
 
 
----
 
 
==conclusion==
 
 
So the relationship between <math> X(f) </math> and <math> X_s(f) </math> is that <math> X_s(f) </math> is a a rep of <math> X(f) </math> in frequency domain with period of <math> \frac{1}{T} </math> and magnitude scaled by <math> \frac{1}{T} </math>.
 
the relationship between <math> X(f) </math> and <math> X_d(\omega) </math> is that <math> X_d(\omega) </math> is also a a rep of <math> X(f) </math> in frequency domain with period <math> 2\pi </math> and magnitude is also scaled by <math> \frac{1}{T} </math>, but the frequency is scaled by <math> 2\pi T </math>
 
 
----
 
----

Revision as of 08:37, 6 October 2014


Frequency domain view of the relationship between a signal and a sampling of that signal

A slecture by ECE student Talha Takleh Omar Takleh

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  1. Introduction
  2. Main Points
  3. Conclusion

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood