Line 1: Line 1:
[[Link title]][[Category:slecture]]
+
[[Link title]]  
[[Category:ECE438Fall2014Boutin]]
+
<center><font size="5"></font>
[[Category:ECE]]
+
<font size="5">DTFT of a Cosine Sampled Above and Below the Nyquist Rate </font>
[[Category:ECE438]]
+
[[Category:signal processing]]
+
  
<center><font size= 5>
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Sahil Sanghani
DTFT of a Cosine Sampled Above and Below the Nyquist Rate
+
</font size>
+
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Sahil Sanghani
+
Partly based on the [[2014 Fall ECE 438 Boutin|ECE438 Fall 2014 lecture]] material of [[User:Mboutin|Prof. Mireille Boutin]].  
 
+
</center>  
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
+
</center>
+
 
----
 
----
  
== Outline ==
+
== Outline ==
* Introduction
+
 
* Useful Background
+
*Introduction  
* DTFT Example of a Cosine Sampled Above the Nyquist Rate
+
*Useful Background  
* DTFT Example of a Cosine Sampled Below the Nyquist Rate
+
*DTFT Example of a Cosine Sampled Above the Nyquist Rate  
* Conclusion
+
*DTFT Example of a Cosine Sampled Below the Nyquist Rate  
* References
+
*Conclusion  
 +
*References
  
 
----
 
----
 +
 
----
 
----
  
== Introduction ==
+
== Introduction ==
In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.
+
 
 +
In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.  
 +
 
 
----
 
----
== Useful Background ==
 
Nyquist Condition: <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub></span><br />DTFT of a Cosine: <span class="math"> <em>x</em><sub><em>d</em></sub>[<em>n</em>] = <em>c</em><em>o</em><em>s</em>(2<em>π</em><em>n</em><em>T</em>) → <em>X</em>(<em>ω</em>) = <em>π</em>(<em>δ</em>(<em>ω</em> − <em>ω</em><sub><em>o</em></sub>) + <em>δ</em>(<em>ω</em> + <em>ω</em><sub><em>o</em></sub>))</span>, for <span class="math"><em>ω</em>  ∈  [ − <em>π</em>, <em>π</em>]</span><br />The DTFT of a sampled signal is periodic with <span class="math">2<em>π</em></span>.
 
  
== DTFT of a Cosine Sampled Above the Nyquist Rate ==
+
== Useful Background  ==
<p>For our original pure frequency, let’s choose the E below middle C. The E occurs at 330<span class="math"><em>H</em><em>z</em></span>.</p>
+
 
<p><span class="math"><em>x</em>(<em>t</em>)=<em>c</em><em>o</em><em>s</em>(2<em>π</em>* 330<em>t</em>)</span><br /></p>
+
Nyquist Condition: <span class="texhtml">''f''<sub>''s''</sub> = 2 * ''f''<sub>''m''''a''''x''</sub></span> DTFT of a Cosine: <font size="2"><math>x_d[n] = cos(2\pi nT){\leftrightarrow}X(\omega) = \pi(\delta(\omega-\omega_o) + \delta(\omega+\omega_o)){ ,for\ } \omega \in [-\pi,\pi]</math></font>
<p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is: <br /><span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub> = 2 * (330<em>H</em><em>z</em>) = 660<em>H</em><em>z</em></span>. <br />Let’s sample at 990<span class="math"><em>H</em><em>z</em></span>.
+
 
 +
<font size="2">The DTFT of a sampled signal is periodic with <span class="texhtml"></span>.</font>
 +
 
 +
<font size="2">
 +
== DTFT of a Cosine Sampled Above the Nyquist Rate  ==
 +
 
 +
For our original pure frequency, let’s choose the E below middle C. The E occurs at 330''Hz'' <span class="texhtml">''x''(''t'') = cos(2π * 330''t'')</span> &lt;p&gt;Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is: <br><span class="math">&nbsp;''f''<sub>''s''</sub> = 2 * ''f''<sub>''m''''a''''x''</sub> = 2 * (330''H''''z'') = 660''H''''z''</span>. <br>Let’s sample at 990<span class="math">''H''''z''</span>.
 +
 
 +
<math> \begin{align} \\
 +
x_d[n] & = x(n*\frac{1}{990Hz})\\
 +
& = cos(2\pi n *\frac{330}{990}) = \frac{e^{j2\pi n \frac{330}{550}} + e^{-j2\pi n \frac{330}{550}}}{2}\\
 +
& = cos(\frac{2\pi n}{3})
 +
\end{align}
 +
</math>
 +
 
 +
Because <font style="vertical-align:-150%;"><math>\left | \frac{2\pi}{3}\right | < \pi</math></font>, there is no aliasing occurring in the DTFT, and it can be written as follows:
 +
 
 +
<math> \begin{align} \\
 +
X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{330}{990}) + 2\pi\delta(\omega + 2\pi \frac{330}{990})) , \  \omega \in\ [-\pi,\pi]\\
 +
& = \frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330)) , \  \omega \in\ [-\pi,\pi]\\
 +
& = rep_{2\pi}(\frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330))), \forall \omega
 +
\end{align}
 +
</math>
 +
 
 +
 
 +
 
 +
 
 +
[[2014 Fall ECE 438 Boutin|Back to ECE438, Fall 2014]]
  
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
+
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]]

Revision as of 07:24, 2 October 2014

Link title

DTFT of a Cosine Sampled Above and Below the Nyquist Rate

A slecture by ECE student Sahil Sanghani

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  • Introduction
  • Useful Background
  • DTFT Example of a Cosine Sampled Above the Nyquist Rate
  • DTFT Example of a Cosine Sampled Below the Nyquist Rate
  • Conclusion
  • References


Introduction

In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.


Useful Background

Nyquist Condition: fs = 2 * fm'a'x DTFT of a Cosine: $ x_d[n] = cos(2\pi nT){\leftrightarrow}X(\omega) = \pi(\delta(\omega-\omega_o) + \delta(\omega+\omega_o)){ ,for\ } \omega \in [-\pi,\pi] $

The DTFT of a sampled signal is periodic with .

DTFT of a Cosine Sampled Above the Nyquist Rate

For our original pure frequency, let’s choose the E below middle C. The E occurs at 330Hz x(t) = cos(2π * 330t) <p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is:
 fs = 2 * fm'a'x = 2 * (330H'z) = 660H'z.
Let’s sample at 990H'z.

$ \begin{align} \\ x_d[n] & = x(n*\frac{1}{990Hz})\\ & = cos(2\pi n *\frac{330}{990}) = \frac{e^{j2\pi n \frac{330}{550}} + e^{-j2\pi n \frac{330}{550}}}{2}\\ & = cos(\frac{2\pi n}{3}) \end{align} $

Because $ \left | \frac{2\pi}{3}\right | < \pi $, there is no aliasing occurring in the DTFT, and it can be written as follows:

$ \begin{align} \\ X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{330}{990}) + 2\pi\delta(\omega + 2\pi \frac{330}{990})) , \ \omega \in\ [-\pi,\pi]\\ & = \frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330)) , \ \omega \in\ [-\pi,\pi]\\ & = rep_{2\pi}(\frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330))), \forall \omega \end{align} $



Back to ECE438, Fall 2014

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett