Line 30: Line 30:
 
----
 
----
 
== Useful Background ==
 
== Useful Background ==
Nyquist Condition: <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub></span><br />DTFT of a Cosine: <span class="math"> <em>x</em><sub><em>d</em></sub>[<em>n</em>] = <em>c</em><em>o</em><em>s</em>(2<em>π</em><em>n</em><em>T</em>) → <em>X</em>(<em>ω</em>) = <em>π</em>(<em>δ</em>(<em>ω</em> − <em>ω</em><sub><em>o</em></sub>) + <em>δ</em>(<em>ω</em> + <em>ω</em><sub><em>o</em></sub>))</span>, for <span class="math"><em>ω</em>  ∈  [ − <em>π</em>, <em>π</em>]</span><br />The DTFT of a sampled signal is periodic with <span class="math">2<em>π</em></span>.</p>
+
Nyquist Condition: <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub></span><br />DTFT of a Cosine: <span class="math"> <em>x</em><sub><em>d</em></sub>[<em>n</em>] = <em>c</em><em>o</em><em>s</em>(2<em>π</em><em>n</em><em>T</em>) → <em>X</em>(<em>ω</em>) = <em>π</em>(<em>δ</em>(<em>ω</em> − <em>ω</em><sub><em>o</em></sub>) + <em>δ</em>(<em>ω</em> + <em>ω</em><sub><em>o</em></sub>))</span>, for <span class="math"><em>ω</em>  ∈  [ − <em>π</em>, <em>π</em>]</span><br />The DTFT of a sampled signal is periodic with <span class="math">2<em>π</em></span>.
  
 
== DTFT of a Cosine Sampled Above the Nyquist Rate ==
 
== DTFT of a Cosine Sampled Above the Nyquist Rate ==
<p>For our original pure frequency, let’s choose the E below middle C. The E occurs at 330<span class="math">H</em><em>z</em></span>.<br /><br /></p>
+
<p>For our original pure frequency, let’s choose the E below middle C. The E occurs at 330<span class="math"><em>H</em><em>z</em></span>.</p>
<p><br /><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p>
+
<p><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p>
<p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is <span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub> = 2 * (330<em>H</em><em>z</em>) = 660<em>H</em><em>z</em></span>. Let’s sample at 990<span class="math"><em>H</em><em>z</em></span>.
+
<p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is: <br /><span class="math"> <em>f</em><sub><em>s</em></sub> = 2 * <em>f</em><sub><em>m</em><em>a</em><em>x</em></sub> = 2 * (330<em>H</em><em>z</em>) = 660<em>H</em><em>z</em></span>. <br />Let’s sample at 990<span class="math"><em>H</em><em>z</em></span>.
  
 
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
 
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]

Revision as of 05:36, 2 October 2014

Link title

DTFT of a Cosine Sampled Above and Below the Nyquist Rate

A slecture by ECE student Sahil Sanghani

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  • Introduction
  • Useful Background
  • DTFT Example of a Cosine Sampled Above the Nyquist Rate
  • DTFT Example of a Cosine Sampled Below the Nyquist Rate
  • Conclusion
  • References


Introduction

In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.


Useful Background

Nyquist Condition:  fs = 2 * fmax
DTFT of a Cosine:  xd[n] = cos(2πnT) → X(ω) = π(δ(ω − ωo) + δ(ω + ωo)), for ω  ∈  [ − π, π]
The DTFT of a sampled signal is periodic with 2π.

DTFT of a Cosine Sampled Above the Nyquist Rate

For our original pure frequency, let’s choose the E below middle C. The E occurs at 330Hz.

x(t) = cos(2π * 330t)

Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is:
 fs = 2 * fmax = 2 * (330Hz) = 660Hz.
Let’s sample at 990Hz. Back to ECE438, Fall 2014

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang